首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preimplantation genetic diagnosis (PGD) is an alternative to prenatal diagnosis for couples at risk of transmitting genetic disorders to their offspring. We present a fluorescence in situ hybridization (FISH) analysis of embryos obtained after seven PGD cycles in six couples with Robertsonian translocations and male factor infertility: 4 der(13;14), 1 der(14;21) and 1 der(15;21). Of 74 metaphase II (MII) injected oocytes, 61 (82.4%) fertilized normally and cleaved. Of these, 37/61 (60.7%) embryos were of high morphological quality with ≥6 blastomeres. After biopsy of 44 embryos at day 3 of development, seven degenerated, seven arrested in development and 30/44 (68.2%) evolved, of which 25/30 (83.3%) reached the morula/blastocyst stage. Analysis of biopsied blastomeres showed 23/44 (52.3%) of normal/balanced embryos, of which 15 (11 at the morula/blastocyst stage) were transferred in six cycles. One term pregnancy was achieved, which ended by cesarean section at 37 weeks of gestation, giving birth to two healthy newborn. Analysis of 49 embryos (excluding 12 inconclusive cases) showed a predominance of alternate segregation (38/49, 77.6%) over adjacent segregation (7/49, 14.3%), with one (2%) being a polyploid mosaic and three (6.1%) chaotic. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
To perform preimplantation DNA diagnosis for Duchenne muscular dystrophy (DMD) in a female carrier of a dystrophin gene deletion of exons 3–18, we developed a polymerase chain reaction (PCR)-based assay of exon 17 sequences. Exon 17 was efficiently amplified in all 50 single blastomeres of normal control embryos and in five blastomeres of one male embryo of the DMD carrier obtained after a first preimplantation diagnosis (PID) for gender determination. In ten blastomeres of another two male embryos of the DMD carrier, no PCR signals were observed, probably as a result of the deletion. After intracytoplasmic sperm injection, embryos were analysed for exon 17 and three of the four embryos showing normal PCR signals were replaced, resulting in a singleton pregnancy. Prenatal diagnosis showed a female karyotype and DNA analysis indicated that the fetus was not a DMD carrier.  相似文献   

3.
First reported in 1990, PGD has evolved into a complementary form of prenatal diagnosis offering novel indications. DNA for PGD can be recovered with equal safety and facility from polar bodies I and II, blastomere (8 cell embryo) and trophectoderm (5–6 day blastocyst). Diagnostic accuracy is very high (>99%) for both chromosomal abnormalities and single gene disorders. Traditional application of FISH with chromosome specific probes for detecting aneuploidy and translocations may be replaced or complemented by array comparative genome hybridization (array CGH); biopsied embryos can now be cryopreserved (vitrification) while analysis proceeds in orderly fashion. PGD has been accomplished for over 200 different single gene disorders. Novel indications for PGD not readily applicable by traditional prenatal genetic diagnosis include avoiding clinical pregnancy termination, performing preconceptional diagnosis (polar body I), obtaining prenatal diagnosis without disclosure of prenatal genotype (nondisclosure), diagnosing adult-onset disorders particularly cancer, and identifying HLA compatible embryos suitable for recovering umbilical cord blood stem cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Sanjad–Sakati syndrome (SSS) is an autosomal recessive disorder characterized by congenital hypoparathyroidism, growth and mental retardation. In Saudi Arabia, the disease is caused by a deletion of 12 bp (155-166nt) in the tubulin-specific chaperone E gene. In a family with two affected siblings with SSS, preimplantation genetic diagnosis (PGD) was performed. Fluorescent PCR (F-PCR) was utilized to check the heterozygosity and the homozygosity status of the parents and the affected children, respectively. F-PCR was then optimized for single-cell analysis by using peripheral blood lymphocytes. The patient underwent a cycle with intra-cytoplasmic sperm injection. A total of 11 embryos were obtained and biopsied. There were five heterozygous, three homozygous affected and three normal embryos. One heterozygous and one normal embryo were transferred because of their very good quality (morula). A singleton pregnancy was obtained, and amniosynthesis confirmed the presence of the heterozygous fetus. These results show for the first time, the feasibility of PGD for SSS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Neurofibromatosis type 2 (NF2) is a dominantly inherited cancer predisposition syndrome that is caused bymutations in the NF2 gene. We report here the first clinical preimplantation genetic diagnosis (PGD) forNF2. A protocol was developed to simultaneously amplify the mutation and a single nucleotide polymorphism (SNP) located within the gene. The mutation and polymorphism were analysed by simultaneous fluorescent single-strand conformation polymorphism (SSCP) on an automated DNA sequencer. The mutation, carried by the male partner, was a single base pair substitution affecting a splice site in intron 4 of the gene. The female partner was infertile due to polycystic ovary syndrome and would require IVF to conceive. The couple was found to be informative at a linked intragenic SNP situated in the 5′ untranslated region of the gene. The SNP was included in the assay to reduce the risk of misdiagnosis due to allele dropout (ADO). The couple underwent three cycles of treatment during which a total of 43 blastomeres were biopsied from 31 embryos. Amplification at both loci was obtained in 35 cells (81%). A total of five embryos were transferred, two in the first cycle, two in the second and one in the third. No pregnancy ensued. The results of the diagnoses indicated that, in this couple, the inheritance of the mutation may be non-Mendelian. Out of a total of 32 embryos tested only four were found not to carry the mutation. The reasons for this apparent skew remain unknown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The efficiency of the polymerase chain reaction (PCR) in detecting the cystic fibrosis (CF) ΔF508 mutation (which is the most common mutation of CF) was assessed in single human blastomeres. Twenty-one human immature oocytes (germinal-vesicle-stage oocytes) that had been donated for research were matured in vitro and a single spermatozoon from a carrier of the CF ΔF508 mutation was injected into the ooplasm. Fourteen embryos were obtained after intracytoplasmic sperm injection (ICSI). PCR analysis was carried out on 70 single blastomeres isolated from these 14 embryos. The results showed that the efficiency of DNA amplification by PCR in single nucleate blastomeres was 94 per cent (59/63). There were no false-positive results since none of the blank samples or the blastomeres without a nucleus showed an amplified signal. We found that nine embryos were homozygous for the unaffected genotype and that four embryos were heterozygous since they contained both the unaffected and the ΔF508 genotype. In a four-cell embryo, we observed the homozygous unaffected genotype in one blastomere and a heterozygous ΔF508/unaffected genotype in the other three blastomeres.  相似文献   

7.
Preimplantation genetic diagnosis (PGD) is a technique used for determining the genetic status of a single cell biopsied from embryos or oocytes. Genetic analysis from a single cell is both rewarding and challenging, especially in PGD. The starting material is very limited and not replaceable, and the diagnosis has to be made in a very short time. Different whole genome amplification (WGA) techniques have been developed to specifically increase the DNA quantities originating from clinical samples with limited DNA contents. In this review, currently available WGA techniques are introduced and, among them, multiple displacement amplification (MDA) is discussed in detail. MDA generates abundant assay-ready DNA to perform broad panels of genetic assays through its ability to rapidly amplify genomes from single cells. The utilization of MDA for single-cell molecular analysis is expanding at a high rate, and MDA is expected to soon become an integral part of PGD. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
We have developed a heminested PCR (polymerase chain reaction) method, performed on single cells, for the analysis of the most common cystic fibrosis (CF) mutation (AF508). As a quality control, the polymorphic exon 2 of the HLA DQA1 locus was co-amplified from the same cell. With a non-radioactive reverse dot-blot assay, the genotype of these two loci could be determined. Experiments on 98 single fibroblasts, heterozygous for the CFTR and the DQA1 locus, showed that amplification of either locus could be obtained in 97 per cent of the cases, but only 90 per cent showed heterozygosity for CF, 75 per cent showed heterozygosity for DQA1, and 74 per cent showed heterozygosity for both CF and DQA1. Contaminations detected only after DQA1 typing occurred in 3 per cent of our samples. Error rate calculations based on our experimental PCR data indicate that single blastomere diagnosis would lead to unacceptable errors, i.e., an affected fetus, in less than 1 per cent of the cases. The risk of undetected crossing-over or the dubious results that crossing-over could generate, would make isolated polar body diagnosis at the present time very difficult. The combined approach of PCR on polar bodies followed by confirmation of the diagnosis on blastomeres, however, should give a solid base for preimplantation diagnosis of monogenic disorders.  相似文献   

9.
The accuracy of biochemical and molecular prenatal diagnoses using chorionic villi as the fetal source was assessed by seven centres participating in the NICHD collaborative study on the safety and accuracy of chorionic villus sampling (CVS) and amniocentesis. Of 601 pregnancies studied, biochemical methods were used to determine the diagnosis in 283 fetuses at risk for 35 different metabolic disorders. Fifteen different lysosomal storage diseases accounted for 81 per cent of the biochemical prenatal diagnoses performed, with 57 per cent of these pregnancies at risk for Tay-Sachs disease. No errors were made in the biochemical diagnoses that predicted affected or unaffected fetuses. However, the diagnoses of certain disorders (e.g., mucopolysacchariodosis type IH, metachromatic leukodystrophy, and Krabbe disease) occasionally required confirmatory studies in cultured amniocytes because the enzyme results were inconclusive in direct and/or cultured villi or due to the presence of a pseudodeficiency allele. Of these, only the diagnosis of a fetus at risk for Krabbe disease remained inconclusive after special studies to discriminate between mutant and pseudodeficiency alleles. Recombinant DNA techniques were used to predict the diagnosis of 318 fetuses at risk for 16 different disorders in which the defective disease gene could be detected either directly or by linkage analysis to a nearby polymorphic marker. Of these, 32 per cent were for haemoglobinopathies, 25 per cent for cystic fibrosis, 24 per cent for Duchenne or Becker muscular dystrophy, and 7 per cent for haemophilias. Pregnancies at risk for known disorders with specific molecular lesions (e.g., sickle cell disease) were accurately diagnosed in direct and/or cultured villi. Diagnoses requiring analyses with closely linked polymorphic markers were occasionally uninformative or inconclusive. Maternal contamination was not reported in any biochemical or molecular-based diagnosis. These studies document the high accuracy and rapidity of both biochemical and mutation-specific prenatal diagnoses with direct and cultured chorionic villi.  相似文献   

10.
Preimplantation genetic diagnosis (PGD) was developed more than a decade ago to offer an alternative to prenatal diagnosis for couples at risk of transmitting an inherited disease to their offspring. Portuguese-type familial amyloidotic polyneuropathy (FAP type I), is an autosomal dominant disease presenting an inherited mutation in the gene encoding the plasma protein transthyretin (TTR). We here report the first protocol for single-cell detection of the Met30 mutation in FAP type I and its application to PGD. A nested PCR reaction for exon 2 of the TTR gene was developed. The PCR product was then analysed by restriction enzyme analysis and SSCP allowing the detection of the point mutation. Ten clinical cycles were performed in seven couples. From the 93 metaphase II (MII) injected oocytes, 82 were normally fertilized and 78 were biopsied. A positive signal in the nested PCR reaction was obtained in 61 blastomeres, corresponding to a DNA amplification efficiency of 78.2%. No allele dropout (ADO) or contamination were detected. A biochemical pregnancy was obtained in three cases and a clinical pregnancy in one couple is actually in normal evolution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Most of cystic fibrosis (CF) pre-implantation genetic diagnosis (PGD) cases described to date are limited to the detection of ΔF508. Beside this predominant mutation, over 1000 mutations have been identified, rendering the development of a mutation-based PGD protocol impracticable. This is the reason why we, as well as the others, have developed PGD strategies on the basis of the identification of the pathogenic haplotype instead of the mutation(s). In a previous article, we reported the conditions for the co-amplification of two intragenic polymorphic markers and the F508 locus. Here we describe an improved protocol allowing the additional amplification of two new intragenic markers, intron 1 CA repeat (I1CA) and IVS17bTA. This new protocol should, theoretically, allow us to provide a diagnosis to all couples requiring PGD for CF. Using single lymphoblasts, we have tested four different PCR configurations, including one duplex, two triplexes and one quadruplex PCR. All of them gave results compatible with a clinical application. The number of single lymphoblasts tested in each series varied from 89 to 155. PCR efficiency ranged from 95.4 to 100%. A complete haplotype was achieved for 83.2 to 90.7% of the tested cells, with an allele drop out (ADO) rate comprised between 6.0 and 11.6%. We present here three cases that we performed either with the former test (one case using the triplex PCR combining F508, IVS8CA and IVS17bCA) or with the new one (one case using the triplex combining F508, I1CA and IVS17bTA and one case using a quadruplex test). We obtained two single pregnancies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Preimplantation genetic diagnosis (PGD) for monogenic diseases has known a considerable evolution since its first application in the early 1990s. Especially the technical aspects of the genetic diagnosis itself, the single-cell genetic analysis, has constantly evolved to reach levels of accuracy and efficiency nearing those of genetic diagnosis on regular DNA samples. In this review, we will focus on the molecular biological techniques that are currently in use in the most advanced centers for PGD for monogenic disorders, including multiplex polymerase chain reaction (PCR) and post-PCR diagnostic methods, whole genome amplification (WGA) and multiple displacement amplification (MDA). As it becomes more and more clear that when it comes to ethically difficult indications, PGD goes further than prenatal diagnosis (PND), we will also briefly discuss ethical issues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Today, preimplantation genetic diagnosis (PGD) is offered in over 40 centres worldwide for an expanded range of genetic defects causing disease. This very early form of prenatal diagnosis involves the detection of affected embryos by fluorescent in situ hybridization (FISH) (sex determination or chromosomal defects) or by polymerase chain reaction (PCR) (monogenic diseases) prior to implantation. Genetic analysis of the embryos involves the removal of some cellular mass from the embryos (one or two blastomeres at cleavage-stage or some extra-embryonic trophectoderm cells at the blastocyst stage) by means of an embryo biopsy procedure. Genetic analysis can also be performed preconceptionally by removal of the first polar body. However, additional information is then often gained by removal of the second polar body and/or a blastomere from the embryo. Removal of polar bodies or cellular material from embryos requires an opening in the zona pellucida, which can be created in a mechanical way (partial zona dissection) or chemical way (acidic Tyrode's solution). However, the more recent introduction of laser technology has facilitated this step enormously. Different biopsy procedures at different preimplantation stages are reviewed here, including their pros and cons and their clinical applications. The following aspects will also be discussed: safety of zona drilling by laser, use of Ca2+/Mg2+-free medium for decompaction, and removal of one or two cells from cleavage-stage embryos. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Research towards preimplantation diagnosis of genetic disease was initiated in the UK. in the mid 1980s with the aim of helping those couples who would prefer selection to occur at this stage rather than during pregnancy. Following in vitro fertilisation, (IVF), biopsy and removal of 1 or 2 of the totipotent cells from the cleavage stage 3 day old embryo provides the material for molecular genetic diagnosis without interfering with development. Earliest applications were in the avoidance of X-linked disease by sexing embryos and selecting females for transfer to the mother. Initially, polymerase chain reaction (PCR) amplification of DNA from the biopsied blastomeres was performed using primers specific for sequences derived from the Y chromosome and this led to the birth of several normal girls. To reduce the risk of misdiagnosis due to amplification failure, PCR based methods for sexing the embryo now employ both X and Y specific sequences, but the preferred method is currently considered to be fluorescent in situ hybridisation (FISH) with fluorochrome labelled DNA probes to the embryonic nuclei that have been fixed and spread on slides. Dual FISH with probes from X and Y chromosomes allows unequivocal diagnosis of sex and determination of chromosome copy number, avoiding transfer of embryos with abnormal numbers of sex chromosomes, including those with only the maternal X that would be at 50% risk for the X-linked disease. The application of FISH for preimplantation diagnosis has also led to the realisation that chromosomal mosaicism is common at the cleavage stage of development, a finding that has important implications for diagnosis of both dominant single gene disorders and trisomies, as well as for our understanding of early human development. Cloning and sequencing of the relevant genes has enabled the development of methods for the diagnosis of certain recessive single gene disorders in cleavage stage embryos. PCR based methods have to be developed for each condition, sometimes for each family if there is heterogeneity. Preimplantation diagnosis has been successful so far for cystic fibrosis, Tay Sachs disease, and Lesch-Nyhan syndrome. Worldwide, 32 pregnancies have been established following all types of preimplantation diagnosis and with 29 babies born, there is no evidence for any adverse effect on development.  相似文献   

16.
Spinal muscular atrophy (SMA) preimplantation genetic diagnosis (PGD) has been available since 1998. Protocols are based on the detection of the homozygous deletion of exon 7, which are present in 90–98% of SMA patients. A couple where the woman was a heterozygous carrier of the usual SMN1 Del7 mutation and the man was a heterozygous carrier of pMet263Arg substitution in exon 6 of SMN1 gene was referred for PGD. The usual PGD test being unsuitable for this couple, we developed a novel duplex polymerase chain reaction (PCR)-based PGD test for the detection of the mutation pMet263Arg by allele specific amplification, combined with the amplification of D5S641 extragenic polymorphic marker. PCR conditions were established using single control lymphoblasts and lymphocytes from the pMet263Arg substitution carrier. Amplification was obtained in 100% of the 86 single cells tested, amplification refractory mutation system (ARMS) PCR was specific in 100% of single cells tested and a complete genotype (mutation plus D5S641) was achieved in 88% of them. A PGD cycle was performed successfully and a pregnancy was obtained. An unaffected girl was born and postnatal diagnosis confirmed PGD results. This is the first PGD described for SMA because of another mutation than the major homozygous exon 7 deletion of SMN1. In the future, a similar strategy could be adopted for other subtle mutations of this gene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The main difficulty in developing a molecular diagnosis of spinal muscular atrophy (SMA) resides in the specific genomic structure of the locus. Indeed, two highly homologous survival motor neurone genes, SMN1 and SMN2, are present at the locus. The detection of the homozygous deletion of exons 7 and 8 of the SMN1 gene, which is present in 90 to 98% of the patients, is based on methods highlighting 1 of the 8 nucleotidic mismatches existing between these 2 genes. In order to offer preimplantation genetic diagnosis (PGD) for SMA, we developed a new allele-specific amplification method. The main disadvantage of our previously described strategy resided in the possibility of diagnosing, in case of amplification failure, an unaffected embryo as affected. We present here a new PGD-SMA method. We established the conditions for three different duplex PCRs, allowing the specific detection of the SMN1 gene and one polymorphic marker, either D5S629, D5S1977, or D5S641. Of the 60 to 90 single cells tested, the PCR efficiency varied from 98 to 100% with a complete genotype obtained in a range between 81 and 87% with a global allele drop-out rate of 9%. Such a test was used to perform 1 PGD cycle for which 7 embryos could be analysed. All the embryos were fully diagnosed, six as unaffected and one as affected. Four embryos were transferred, but no pregnancy ensued. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Preimplantation genetic diagnosis for aneuploidy screening (PGD-AS) using sequential in situ hybridization was applied for aneuploidy testing in 276 couples with 282 ART cycles. Patients with advanced maternal age (AMA, n = 147), recurrent implantation failure (RIF, n = 48), repeated early spontaneous abortion (RSA, n = 32) and abnormal gamete cell morphology (AGCM, n = 55) including macrocephal sperm forms or cytoplasmic granular oocytes were included. Embryo biopsy was performed on day 3 in a calcium–magnesium–free medium by using a noncontact diode laser system. After fixation and enzymatic treatment, fluorescent in situ hybridization (FISH) was carried out on 1147 blastomeres with specific probes for chromosomes 13, 16, 18, 21 and 22 for AMA group, 13, 18, 21, X and Y for AGCM group and 13, 16, 18, 21, 22, X and Y for RIF and RSA groups respectively. The overall chromosomal abnormality rate in analyzed embryos was 40.9%, with no significant difference between AMA, RIF and RSA groups (p > 0.05). However, AGCM group presented a higher rate of chromosomal aneuploidies (57.4%) than the other three groups (p < 0.01). A total of 84% biopsied embryos presented cleavage in 24 h and embryo transfer was realized in 278 cycles. In four cycles, no chromosomally normal embryo was found for embryo transfer. A total of 88 pregnancies (31.6%) were achieved, 19.3% resulted in abortion and 63 healthy births were obtained, with a total of 93 babies born. Aneuploidy testing in couples with poor prognosis undergoing ART cycles is a useful tool to increase the chance of ART success. Furthermore, abnormal gamete cell morphology should be considered one of the major indications for PGD in ART programs as high aneuploidy rates were observed in this group. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Preimplantation genetic diagnosis (PGD) of numerical chromosome abnormalities significantly reduces spontaneous abortions and may increase pregnancy rates in women of advanced maternal age undergoing in vitro fertilization. However, the technique has an error rate of around 10% and trisomy 21 conceptions have occurred after PGD. To further reduce the risk of transferring trisomy 21 embryos to the patient, we designed a protocol that analyzes chromosome 21 twice by targeting two different loci. This protocol was applied to 388 embryos from 60 cycles of PGD of aneuploidy. The scoring criterion used was based on giving equal importance to both probe results. Of the 242 embryos diagnosed as abnormal, 125 were re-biopsied to assess the rate of false positives and false negatives of the protocol and their clinical relevance. The results of the present study showed no reduction in the overall fluorescent in situ hybridization (FISH) error rate for single cells. However, by using a different scoring criterion, the incidence of false negative can be reduced to 1.6% without missing any trisomy 21. In addition, the present study suggests that if two or more loci from the same chromosome could be simultaneously analyzed in single cells, errors caused by false monosomies could be reduced. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Preimplantation genetic diagnosis (PGD) offers couples at risk for transmitting an inherited disorder the possibility to avoid the need to terminate affected pregnancies. PGD for monogenic diseases is most commonly accomplished by blastomere biopsy from cleavage-stage embryos, followed by PCR-based DNA analysis. However, the molecular heterogeneity of many monogenic diseases requires a diagnostic strategy capable of detecting a range of mutations and compound genotypes. With the above considerations, we developed an accurate and reliable strategy for analysis of β-globin gene mutations, applicable for PGD for the wide spectrum of β-thalassemia major mutations in the Chinese population. The strategy involves primer-extension preamplification (PEP), followed by nested PCR and reverse dot blot (RDB) for mutation detection since it facilitates simultaneous analysis of more than one mutation in a single cell. This report describes the application of the strategy in two clinical IVF/PGD cycles at risk for transmitting β-thalassemia major, which resulted in the first thalassemia-free children born after PGD in China. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号