首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Subzonal insemination has been proposed to achieve fertilization in cases where standard in vitro fertilization has failed. We present the results of chromosome analysis of oocytes after subzonal insemination. Our data suggest that the main cause (76 per cent) of the absence of cleavage after subzonal insemination is the total absence of sperm nucleus evolution of the injected spermatozoa. Our results also suggest that spermatozoa chromatin development is normal after subzonal insemination. Aneuploidy does not seem to be increased in zygotes after subzonal insemination. However, polyploidy was often more important than predicted by the observation of pronuclei (PN). Pronucleus development might be asynchronous and can appear earlier or later than after standard IVF. The cytogenetic risk after subzonal insemination might therefore be triploidy (if a triploid egg is transferred, because only 2 PN were seen) rather than aneuploidy or structural abnormalities.  相似文献   

2.
Preimplantation genetic testing for aneuploidy (PGT-A) by copy number analysis is now widely used to select euploid embryos for transfer. Whole or partial chromosome aneuploidy can arise in meiosis, predominantly female meiosis, or in the postzygotic, mitotic divisions during cleavage and blastocyst formation, resulting in chromosome mosaicism. Meiotic aneuploidies are almost always lethal, however, the clinical significance of mitotic aneuploidies detected by PGT-A is not fully understood and healthy live births have been reported following transfer of mosaic embryos. Here, we used single nucleotide polymorphism genotyping of both polar bodies and embryo samples to identify meiotic aneuploidies and compared copy number changes for meiotic and presumed mitotic aneuploidies in trophectoderm cells biopsied at the blastocyst stage and arrested embryos. PGT-A detected corresponding full copy number changes (≥70%) for 36/37 (97%) maternal meiotic aneuploidies. The number of presumed mitotic copy number changes detected exceeded those of meiotic origin. Although mainly in the mosaic range, some of these mitotic aneuploidies had copy number changes ≥70% and would have been identified as full aneuploidies. Interestingly, many arrested embryos had multiple mitotic aneuploidies across a broad range of copy number changes, which may have arisen through tripolar spindle and other mitotic abnormalities.  相似文献   

3.
Interphase fluorescent in situ hybridization (FISH) analysis performed on uncultured amniotic fluid cells from a female fetus revealed a single signal using an X chromosome alpha-satellite probe, and the absence of any signal using a Y chromosome alpha-satellite probe. This result was initially interpreted as monosomy for the X chromosome in the fetus. Subsequent chromosome analysis from the cultured amniotic fluid cells showed two apparently normal X chromosomes. FISH using the X alpha-satellite probe on metaphase spreads revealed hybridization to both X chromosomes, although one signal was markedly reduced compared to the other. The same hybridization pattern was observed in the mother of the fetus. This is the first report of a rare familial X centromere variant resulting in a false-positive diagnosis of monosomy X by interphase FISH analysis for prenatal diagnosis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The gain or loss of a chromosome—or aneuploidy—acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.  相似文献   

5.
Preimplantation genetic diagnosis for aneuploidy screening (PGD-AS) using sequential in situ hybridization was applied for aneuploidy testing in 276 couples with 282 ART cycles. Patients with advanced maternal age (AMA, n = 147), recurrent implantation failure (RIF, n = 48), repeated early spontaneous abortion (RSA, n = 32) and abnormal gamete cell morphology (AGCM, n = 55) including macrocephal sperm forms or cytoplasmic granular oocytes were included. Embryo biopsy was performed on day 3 in a calcium–magnesium–free medium by using a noncontact diode laser system. After fixation and enzymatic treatment, fluorescent in situ hybridization (FISH) was carried out on 1147 blastomeres with specific probes for chromosomes 13, 16, 18, 21 and 22 for AMA group, 13, 18, 21, X and Y for AGCM group and 13, 16, 18, 21, 22, X and Y for RIF and RSA groups respectively. The overall chromosomal abnormality rate in analyzed embryos was 40.9%, with no significant difference between AMA, RIF and RSA groups (p > 0.05). However, AGCM group presented a higher rate of chromosomal aneuploidies (57.4%) than the other three groups (p < 0.01). A total of 84% biopsied embryos presented cleavage in 24 h and embryo transfer was realized in 278 cycles. In four cycles, no chromosomally normal embryo was found for embryo transfer. A total of 88 pregnancies (31.6%) were achieved, 19.3% resulted in abortion and 63 healthy births were obtained, with a total of 93 babies born. Aneuploidy testing in couples with poor prognosis undergoing ART cycles is a useful tool to increase the chance of ART success. Furthermore, abnormal gamete cell morphology should be considered one of the major indications for PGD in ART programs as high aneuploidy rates were observed in this group. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In a routine application of commercially available centromeric DNA probes for the prenatal screening of common trisomies involving the autosomes 13, 18, and 21, and sex chromosomes, four cases of discrepancy between fluorescence in situ hybridization (FISH) results and follow-up cytogenetic analysis were observed from a total of 516 cases of amniocentesis. In three of these cases, the results were false negative, and in one false positive. In this case, amniocentesis was performed because of a positive triple test in a 34-year-old woman with previous infertility treatment. The alpha satellite DNA probe for chromosomes 13/21 revealed five signals in 50 per cent of uncultured amniocytes, while standard cytogenetic analysis showed a normal karyotype. FISH analysis on metaphase chromosomes demonstrated the location of the additional signal in the centromeric region of chromosome 22. This additional signal was also present in the centromeric region of chromosome 22 of the mother, providing evidence for a possible inherited polymorphism in chromosome 22 responsible for unspecific hybridization with the alpha satellite probe for chromosomes 13/21 in this case. The observed polymorphism in centromeric regions may contribute to unreliability of the use of the 13/21 alpha satellite probe for prenatal screening by FISH.  相似文献   

7.
Sixty spare human embryos at various stages of preimplantation development were prepared for cytogenetic analysis. Fluorescent staining of those with metaphases allowed scoring for the presence of a Y chromosome. In situ hybridization was then performed using a biotinylated Y-specific sequence, and the probe was detected by a standard streptavidinlinked alkaline phosphatase system. This enabled comparison of the chromosomal sex with that obtained after in situ hybridization in 28 embryos, and the sexing result obtained by the two methods was concordant in all cases. A further 21 embryos in which no metaphase chromosomes were obtained were sexed by biotinylated in situ hybridization only. Overall, 66 per cent of male interphase nuclei demonstrated a Y-specific hybridization signal. Results were obtained in under 24 h, which may permit the sexing of an embryo biopsied during cleavage and the transfer of sexed embryos at the blastocyst stage to the mother's uterus in the same cycle as oocytes are collected for in vitro fertilization.  相似文献   

8.
We present the first case of a fetus with pure tetrasomy 20p proven by cord-blood sampling at 24 weeks of gestation. This case was diagnosed in utero with multiple congenital anomalies including occipital encephalocele, mega-cisterna magna, mesomelic shortening, and clubfeet. An analysis of GTG-banded chromosomes of 20 metaphase cells was performed. Female karyotype [47,XX, +i(20)(p10)] was revealed in all cells. Pure tetrasomy 20p was confirmed using fluorescent in situ hybridization (FISH) with a telomere probe for chromosome 20p in all seven metaphase cells. The pregnancy was terminated because of associated multiple anomalies and severe oligohydramnios. The postmortem examination confirmed the prenatal diagnosis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Fluorescence in situ hybridization (FISH) was performed with probes specific for chromosomes 13, 18, 21, X and Y on 911 of 11123 (8.2%) amniotic fluid samples submitted to the present authors' laboratory for cytogenetic analysis over an 8-year period. Altogether 3516 hybridizations were performed with an interpretable FISH result on all chromosomes requested in 884/911 (97%) of cases. An uninformative FISH result occurred in 44 hybridizations among 27 cases (3%). Of a total of 89 karyotypically proven cases with aneuploidy that might have been detected by FISH, the overall detection rate was 84%. An inconclusive or incomplete FISH result occurred in 9/89 (10%) of these proven aneuploid cases. In the remaining 80 informative proven aneuploid cases, correct detection of aneuploidy was accomplished in 75/80 (94%) of samples. A false-negative result occurred in the remaining 5/80 (6%) of such informative cases. Eighteen cases had karyotypically proven abnormalities that could not have been detected by the targeted FISH. Aside from these 18 cases, FISH allowed correct detection of normal disomy in 785/804 (98%) of such cases. An incomplete FISH result occurred in 18 normal disomic cases. There was a single possible ‘false-positive’ FISH result for chromosome 21. Interphase FISH analysis of uncultured amniotic fluid cells has been shown to be a useful laboratory tool for rapid fetal aneuploidy screening during pregnancy. As with all clinical laboratory diagnostic tests, incomplete or inconclusive results (or even interpretive errors) occur in a small percentage of cases. Nevertheless, FISH results accompanied by other data and by appropriate counseling provide clinicians and patients with valuable information for clinical decision-making surrounding family planning and pregnancy management. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Preimplantation genetic diagnosis (PGD) is an alternative to prenatal diagnosis for couples at risk of transmitting genetic disorders to their offspring. We present a fluorescence in situ hybridization (FISH) analysis of embryos obtained after seven PGD cycles in six couples with Robertsonian translocations and male factor infertility: 4 der(13;14), 1 der(14;21) and 1 der(15;21). Of 74 metaphase II (MII) injected oocytes, 61 (82.4%) fertilized normally and cleaved. Of these, 37/61 (60.7%) embryos were of high morphological quality with ≥6 blastomeres. After biopsy of 44 embryos at day 3 of development, seven degenerated, seven arrested in development and 30/44 (68.2%) evolved, of which 25/30 (83.3%) reached the morula/blastocyst stage. Analysis of biopsied blastomeres showed 23/44 (52.3%) of normal/balanced embryos, of which 15 (11 at the morula/blastocyst stage) were transferred in six cycles. One term pregnancy was achieved, which ended by cesarean section at 37 weeks of gestation, giving birth to two healthy newborn. Analysis of 49 embryos (excluding 12 inconclusive cases) showed a predominance of alternate segregation (38/49, 77.6%) over adjacent segregation (7/49, 14.3%), with one (2%) being a polyploid mosaic and three (6.1%) chaotic. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
First reported in 1990, PGD has evolved into a complementary form of prenatal diagnosis offering novel indications. DNA for PGD can be recovered with equal safety and facility from polar bodies I and II, blastomere (8 cell embryo) and trophectoderm (5–6 day blastocyst). Diagnostic accuracy is very high (>99%) for both chromosomal abnormalities and single gene disorders. Traditional application of FISH with chromosome specific probes for detecting aneuploidy and translocations may be replaced or complemented by array comparative genome hybridization (array CGH); biopsied embryos can now be cryopreserved (vitrification) while analysis proceeds in orderly fashion. PGD has been accomplished for over 200 different single gene disorders. Novel indications for PGD not readily applicable by traditional prenatal genetic diagnosis include avoiding clinical pregnancy termination, performing preconceptional diagnosis (polar body I), obtaining prenatal diagnosis without disclosure of prenatal genotype (nondisclosure), diagnosing adult-onset disorders particularly cancer, and identifying HLA compatible embryos suitable for recovering umbilical cord blood stem cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In situ hybridization using a series of alphoid DNA probes has demonstrated the origin of two small accessory mosaic marker chromosomes ascertained from 1079 amniocenteses. These markers appeared to be de novo, derived from acrocentric chromosomes, and identical by traditional cytogenetic staining (G, Q, C, AgNOR, Hoechst-distamycin). Molecular characterization showed that one marker had originated from chromosome 14, the other from chromosome 22. Clinical outcome in both cases was normal.  相似文献   

13.
We characterized by microdissection and fluorescence in situ hybridization (FISH) two marker chromosomes: (1) a de novo, acrocentric marker chromosome detected in 88 per cent of the amniotic fluid cells of one of two physically and developmentally normal twins; and (2) a metacentric marker chromosome present in a phenotypically normal female. Analysis of FISH probes developed from the marker chromosomes indicated that the marker chromosomes in cases 1 and 2 were del(14)(q11) and a derivative chromosome from a Robertsonian translocation, respectively. Microdissection in combination with FISH may prove to be a valuable technique in determining the chromosomal origin of de novo marker chromosomes and unbalanced structural rearrangements detected during prenatal diagnosis.  相似文献   

14.
A cytogenetic survey and follow-up studies were made of 14 cases with supernumerary marker chromosomes, identified among 12 699 prenatal samples, investigated at our institution over a 10-year period from 1980 to 1990. FISH (fluorescence in situ hybridization) techniques were employed to identify the chromosomal origin of the marker chromosomes. Five cases were familial, all derived from acrocentric chromosomes, and all without apparent phenotypic effects in the children. Nine cases represented de novo aberrations. In two cases (one with a marker from chromosome 14 or 22, the other with a ring-like marker derived from chromosome 17), the pregnancies continued and apparently normal babies were delivered at term, but the child with a marker derived from chromosome 17 showed slight psychomotor retardation at 2 years of age. All other pregnancies with de novo markers were terminated. In three cases, significant abnormalities were found at autopsy. One of these had an isochromosome 12p and the phenotype was consistent with Pallister-Killian syndrome. In conclusion, marker chromosome identification, as well as clinical follow-up, is essential for the purpose of improving genetic counselling.  相似文献   

15.
Four apparent triploid/diploid mosaic cases were studied. Three of the cases were detected at prenatal diagnosis and the other was of an intellectually handicapped, dysmorphic boy. Karyotypes were performed in multiple tissues if possible, and the inheritance of microsatellites was studied with DNA from fetal tissues and parental blood. Non-mosaic triploids have a different origin from these mosaics with simple digyny or diandry documented in many cases. Three different mechanisms of origin for these apparent mosaics were detected: (1) chimaerism with karyotypes from two separate zygotes developing into a single individual, (2) delayed digyny, by incorporation of a pronucleus from a second polar body into one embryonic blastomere, and (3) delayed dispermy, similarly, by incorporation of a second sperm pronucleus into one embryonic blastomere. In three of the four cases, there was segregation within the embryos of triploid and diploid cell lines into different tissues from which DNA could be isolated. In case 2 originating by digyny, the same sperm allele at each locus could be detected in both triploid and diploid tissues, which is supportive evidence for the involvement of a single sperm and for true mosaicism rather than chimaerism. Similarly, in case 4 originating by dispermy, the same single ovum allele at each locus could be detected in diploid and triploid tissues, confirming mosaicism. In the chimaeric case (case 3), the diploid line had the karyotype 47,XY,+16 while the triploid line was 69,XXY. This suggests a chimaera, since, in a true mosaic, the triploid line should also contain the additional chromosome 16. Supporting the interpretation of a chimaeric origin for this case, the DNA data showed that the triploidy was consistent with MII non-disjunction (i.e. involving a diploid ovum). In the mosaic cases (1, 2, 4), there was no evidence of the involvement of a diploid sperm or a diploid ova, and in triploid/diploid mosaicism, an origin from a diploid gamete is excluded, since all such conceptuses would be simple triploids. In one of these triploid/diploid mosaics detected at prenatal diagnosis by CVS, the triploid line seemed to be sequestered into the extra-fetal tissues (confined placental mosaicism). This fetus developed normally and a normal infant was born with no evidence of triploidy in newborn blood or cord blood at three months of age. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Of the 65 328 pregnancies of South Australian mothers screened by the South Australian Maternal Serum Antenatal Screening (SAMSAS) Programme between 1 January 1991 and 31 December 1997, 3431 (5.25%) were declared at increased risk of fetal Down syndrome. Fetal or neonatal karyotype was determined in 2737/3431 (79.8%) of these pregnancies, including 16 with early fetal loss. Interrogation of the database of the South Australian Neonatal Screening Service showed 643 live-born infants whose phenotype was not subsequently questioned among the 694 pregnancies whose karyotype was not determined. Of the remaining 51/3431 pregnancies, 19 ended in early fetal loss without karyotyping and no newborn screening or other records could be found for 32 cases. The 129 instances of abnormal karyotype found were Down syndrome (84), trisomy 18 (four), trisomy 13 (three), triploidy (two), female sex chromosome aneuploidy (six) and male sex chromosome aneuploidy (five), inherited balanced rearrangements (19), mosaic or de novo balanced abnormalities (four) and unbalanced karyotypes (two). In the pregnancies declared at increased risk of fetal Down syndrome, only the karyotype for Down syndrome occurred with a frequency greater than that expected for the general, pregnant population. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
During 7 years (1985–1992), 39 105 consecutive prenatal diagnoses (34 908 amniocenteses and 4197 chorionic villus samples) were made at the five largest clinical genetic laboratories in Sweden. Thirty-one cases of extra structurally abnormal chromosomes (ESACs) were found, giving a total prevalence of 0·8 per 1000. Twelve ESACs were inherited, 14 were de novo and in five the parental origin was unknown. This gives an estimated prevalence of 0·3–0·4 per 1000 for familial and 0·4–0·5 per 1000 for de novo ESACs. Retrospectively, the ESACs were characterized by fluorescence in situ hybridization (FISH). In nine cases, no material was available for this analysis. In 21 of the remaining 22 cases, the chromosomal origin could be identified by FISH. Seventeen of these (81 per cent) were derived from the acrocentric chromosomes, of which 13 originated from chromosome 15 (62 per cent). The most common ESAC was the inv dup(15) (57 per cent). Two cases were derived from chromosome 22, one from chromosome 14, and one from either chromosome 13 or chromosome 21. The four remaining cases consisted to two i(18p)s and two small ring chromosomes derived from chromosomes 4 and 19, respectively.  相似文献   

18.
Since 1993, the position of the American College of Medical Genetics (ACMG) has been that prenatal interphase fluorescence in situ hybridization (FISH) is investigational. In 1997, the FDA cleared the AneuVysion® assay (Vysis, Inc.) to enumerate chromosomes 13, 18, 21, X and Y for prenatal diagnosis. Data is presented from the clinical trial that led to regulatory clearance (1379 pregnancies) and from retrospective case review on 5197 new pregnancies. These studies demonstrated an extremely high concordance rate between FISH and standard cytogenetics (99.8%) for specific abnormalities that the AneuVysion assay is designed to detect. In 29 039 informative testing events (6576 new and 22 463 cases in the literature) only one false positive (false positive rate=0.003%) and seven false negative results (false negative rate=0.024%) occurred. A historical review of all known accounts of specimens tested is presented (29 039 using AneuVysion and 18 275 specimens tested with other probes). These performance characteristics support a prenatal management strategy that includes utilization of FISH for prenatal testing when a diagnosis of aneuploidy of chromosome 13, 18, 21, X or Y is highly suspected by virtue of maternal age, positive maternal serum biochemical screening or abnormal ultrasound findings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Preimplantation genetic diagnosis (PGD) of numerical chromosome abnormalities significantly reduces spontaneous abortions and may increase pregnancy rates in women of advanced maternal age undergoing in vitro fertilization. However, the technique has an error rate of around 10% and trisomy 21 conceptions have occurred after PGD. To further reduce the risk of transferring trisomy 21 embryos to the patient, we designed a protocol that analyzes chromosome 21 twice by targeting two different loci. This protocol was applied to 388 embryos from 60 cycles of PGD of aneuploidy. The scoring criterion used was based on giving equal importance to both probe results. Of the 242 embryos diagnosed as abnormal, 125 were re-biopsied to assess the rate of false positives and false negatives of the protocol and their clinical relevance. The results of the present study showed no reduction in the overall fluorescent in situ hybridization (FISH) error rate for single cells. However, by using a different scoring criterion, the incidence of false negative can be reduced to 1.6% without missing any trisomy 21. In addition, the present study suggests that if two or more loci from the same chromosome could be simultaneously analyzed in single cells, errors caused by false monosomies could be reduced. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Embryonic aneuploidies may be responsible for pregnancy failure in many IVF patients. In recent years, fluorescent in situ hybridisation (FISH) for multiple chromosomes has been used to document a high frequency of chromosomal errors and aneuploidy in human preimplantation embryos and, after embryo biopsy, to select embryos that are more likely to implant. Such studies suggest that women with recurrent miscarriage and advanced maternal age may benefit most from preimplantation genetic diagnosis with aneuploidy screening (PGD-AS). The success of PGD-AS is likely to be enhanced by new technologies, such as comparative genomic hybridisation, which enable full karyotyping of single cells. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号