首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A dicentric X chromosome was found in a female fetus during cytogenetic studies performed on amniotic cells. Blood samples from the parents showed normal karyotypes and the pregnancy was terminated. The mechanism for the formation of this ‘de novo’ rearrangement is discussed.  相似文献   

2.
Nowadays, improved ultrasound techniques enable the detection of more subtle congenital abnormalities at an earlier stage of fetal development. Current cytogenetic techniques can characterize a chromosomal abnormality in greater detail. These advancements in both diagnostic possibilities have helped to answer many questions but have also created new issues and dilemmas in counselling. This is illustrated by this case report of a 35-year-old woman, who presented at the end of the second trimester of her first pregnancy. Sonographic examination indicated an abnormal external genital in a male fetus. A differential diagnosis of hypospadia was made. During follow-up, an amniocentesis was performed, and this showed a 45,X/46,X,idic(Y)(qter-p11.32::p11.32-qter) karyotype as the cause of the sonographic findings. Cytogenetic characterization of the isodicentric Y chromosome and pre- and post-natal findings in the child are reported. Cases with a similar karyotype reported in the literature are reviewed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Interphase fluorescent in situ hybridization (FISH) analysis performed on uncultured amniotic fluid cells from a female fetus revealed a single signal using an X chromosome alpha-satellite probe, and the absence of any signal using a Y chromosome alpha-satellite probe. This result was initially interpreted as monosomy for the X chromosome in the fetus. Subsequent chromosome analysis from the cultured amniotic fluid cells showed two apparently normal X chromosomes. FISH using the X alpha-satellite probe on metaphase spreads revealed hybridization to both X chromosomes, although one signal was markedly reduced compared to the other. The same hybridization pattern was observed in the mother of the fetus. This is the first report of a rare familial X centromere variant resulting in a false-positive diagnosis of monosomy X by interphase FISH analysis for prenatal diagnosis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
An amniocentesis was performed at 13.3 weeks' gestation for advanced maternal age. A mosaic sex chromosome pattern was found: of 50 cells examined, 34 had a 45,X karyotype. In 14 cells with a modal number of 46, a recognizable Y was substituted by a small non-fluorescent marker. C-banding identified the marker as an isodicentric in 12 cells. In two cells, the non-fluorescent marker appeared to be monocentric and looked like a non-fluorescent del (Yq), but could have been an isodicentric Y with inactivation of one of the centromeres. Two cells with a modal number of 47 showed two copies of the monocentric marker. Fluorescent in situ hybridization with an alpha satellite Y-specific centromeric probe confirmed the Y-chromosome origin of the markers and allowed for more accurate prenatal diagnostic information.  相似文献   

5.
An i(Yp) is a rare marker chromosome. We present a case of de novo 46,X,i(Yp) detected prenatally in an amniotic fluid specimen. Fluorescence in situ hybridization (FISH) studies using a panel of Y-specific biotinylated DNA probes identified the marker chromosome as i(Yp). Comparative genomic hybridization (CGH) studies further confirmed the diagnosis. Upon pregnancy termination, external examination of the fetus revealed a generally well-developed male fetus with slight facial dysmorphism and prominent rocker-bottom feet. The molecular cytogenetic data in this case proved very useful in genetic counselling and served as a good example illustrating the important role of molecular techniques for accurate identification of marker chromosomes.  相似文献   

6.
A prospective 3-year collaborative study was undertaken in 1987 to collect cytogenetic data from diagnostic chorionic villus samples (CVS) in the U.K. in order to determine the predictive value of the chromosome abnormalities encountered. Twenty-seven laboratories contributed a total number of 7595 cases, of which 97·6 per cent were successful. Excluding single cell anomalies, a total of 480 cytogenetic abnormalities were reported, of which 137 were familial structural rearrangements and 343 were de novo problems. Non-mosaic trisomies of chromosomes 13, 18, and 21 (n=157), non-mosaic sex chromosome abnormalities (n=33), and triploidy (n=6) were all confirmed in cells of fetal origin where follow-up information was available. Of the nine remaining non-mosaics including tetraploidy, trisomies of other autosomes, and extra markers, only a trisomy 16 and a case of a supernumerary marker proved genuine. Eighty-eight cases of mosaicism were reported to the study, of which only nine were confirmed as genuine: two cases involving chromosome 13, one trisomy 18, two examples of extra marker chromosomes, three 45,X, and one 47,XXX. There were no reports of false-negative findings. Presumptive maternal cell contamination was encountered in 39 cases, a detected incidence of 0·5 per cent. Four cases of presumptive ‘vanishing twin’ were recorded: in three of these, direct preparations showed a female karyotype, whereas cultures indicated a male (with male fetuses in two cases). The fourth case was of a female fetus with male and female cells in the CVS cultures. Subtle structural chromosome abnormalities were missed in three instances. Accurate prediction of the fetal karyotype was shown to require detailed knowledge of both the nature and the distribution of abnormal cells in the extra-embryonic tissues. In many cases, this could only be made where results from direct preparations and cultured cells were available. A number of conclusions were reached from these and similar data in the literature regarding the reliability of chromosome findings in CVS.  相似文献   

7.
A total of 54 cases with prenatal diagnosis of 45,X/46,XY mosaicism was reviewed. Of 47 cases with information on phenotypic outcome, 42 cases (89·4 percent) were reported to be associated with a grossly normal male phenotype. Three cases (6·4 percent) were diagnosed as having mixed gonadal dysgenesis with internal asymmetrical gonads. Two other cases were questionably abnormal. In 40 cases with successful cytogenetic confirmatory studies, the overall rate of cytogenetic confirmation of 45,X/46,XY from tissues derived from fetus/liveborn/placenta was 70·O per cent. This review shows a major difference in the phenotypic outcome between postnatal diagnosis and prenatal diagnosis. Due to the ascertainment bias, almost all known patients with postnatal diagnosis of 45,X/46,XY mosaicism are phenotypically abnormal. Therefore, caution must be used in translating information derived from postnatal diagnosis to prenatal diagnosis. This review calls for collection of more data on 45,X/46,XY mosaicism diagnosed prenatally, more long-term follow-up of liveborn infants, and pathological studies of all abortuses. Emphasis is placed also on the importance of genetic counselling, ultrasound examination, and cytogenetic confirmation.  相似文献   

8.
We describe two cases of prenatally ascertained isochromosome 18. Case 1 included both an isochromosome 18p and an isochromosome 18q, while Case 2 involved only an isochromosome 18q. Both of these cases were associated with a positive maternal serum triple screen trisomy 18 risk (greater than 1 in 100 risk). In addition, fluorescence in situ hybridization (FISH) was performed on uncultured amniotic fluid interphase cells in both cases looking for aneuploidy for chromosomes 13, 18, 21, X and Y. The results of the interphase analyses support the common knowledge that careful interpretation of interphase FISH analysis is necessary and that results should be followed by full cytogenetic analysis. To our knowledge these are the first reported cases of structurally abnormal chromosomes 18 being associated with a positive maternal serum triple screen for trisomy 18. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Early prenatal diagnosis of the fragile X was attempted in 44 pregnancies, including one twin pregnancy at risk of Martin-Bell (MB) syndrome. The sex ratio was 24M:21F. The fragile site was reproducibly demonstrated in cultured chorionic villus (CV) cells in eight male and five female fetuses. Six of the male and three of the female fetuses were terminated. Simultaneous RFLP analysis provided confirmative data with flanking DNA markers in 3 of 13 analysed cases. Recombination and/or non-informativeness at available distal and/or proximal loci were found in nine cases. In one male fetus, discordance between the haplotype and cyto-genetics (fragile-X-negative) suggested the presence of a normal male transmitter, a double meiotic cross-over within the region, or a false-negative cytogenetic diagnosis. However, discordance between prenatal and post-termination/postnatal cytogenetic findings was not observed in this series. The use of excess thymidine for induction of the fragile X in cultured CV cells provided in the majority of cases a safe and rapid method for cytogenetic diagnosis, with options for early induced termination in fragile-X-positive pregnancies, for simultaneous RFLP analysis, and for subsequent second-trimester analysis of fetal blood in complicated cases.  相似文献   

10.
One ‘erroneous’ diagnosis occurred in 200 first-trimester chorionic villus samples (CVS) analysed. In direct preparations following 24 h incubation as well as in long-term cultures, a 46.XX karyotype was observed in the villi (28 and 25 cells, respectively). At 20 weeks of gestation, labour was induced because of fetal death in utero. An autopsy performed on the fetus revealed a male phenotype. Placenta and fetal tissues were not submitted for cytogenetic studies. The discordant CVS karyotype (46,XX), in view of the male fetal phenotype, prompted further cytogenetic and molecular studies. Chromosome marker studies on the parents' blood and chorionic villi confirmed both maternal and paternal inheritance of chromosomes in the CVS. DNA studies on formalin-fixed skin using a Y-specific probe, DYZ1, confirmed the presence of a Y chromosome in the fetus. The most likely cause of the discrepant CVS karyotype is the presence of an undetected degenerating dizygotic twin.  相似文献   

11.
We describe three cases in which we used fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) and comparative genomic hybridization (CGH) to characterize Y chromosome structural anomalies, unidentifiable by conventional G-banding. Case 1 was a 46,X,+mar karyotype; FISH analysis revealed an entire marker chromosome highlighted after hybridization with the Y chromosome painting probe. The PCR study showed the presence of Y chromosome markers AMG and SY620 and the absence of SY143, SY254 and SY147. CGH results confirmed the loss of Yq11.2-qter. These results indicated the presence of a deletion: del(Y)(q11.2). Case 2 was a 45,X [14]/46,XY[86] karyotype with a very small Y chromosome. The PCR study showed the presence of Y chromosome markers SY620 and AMG, and the absence of SY143, SY254 and SY147. CGH results showed gain of Yq11.2-pter and loss of Yq11.2-q12. These results show the presence of a Yp isodicentric: idic(Y)(q11.2). Case 3 was a 45,X,inv(9)(p11q12)[30]/46,X,idic(Y)(p11.3?),inv(9)(p11q12)[70] karyotype. The FISH signal covered all the abnormal Y chromosome using a Y chromosome paint. The PCR study showed the presence of Y chromosome markers AMG, SY620, SY143, SY254 and SY147. CGH only showed gain of Yq11.2-qter. These results support the presence of an unbalanced (Y;Y) translocation. Our results show that the combined use of molecular and classical cytogenetic methods in clinical diagnosis may allow a better delineation of the chromosome regions implicated in specific clinical disorders. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Results from conventional cytogenetic studies on 21 609 amniotic fluid specimens were analyzed retrospectively to determine the residual risk for a cytogenetic abnormality if interphase FISH, capable of only detecting aneuploidy for chromosomes 13, 18, 21, X and Y, was performed and did not reveal an abnormality. Detection rates (the probability of detecting a cytogenetic abnormality when an abnormality is present) and residual risks (the likelihood of a cytogenetic abnormality, in view of normal interphase FISH results) were calculated for the four major clinical indications for prenatal diagnosis (advanced maternal age, abnormal maternal serum screen indicating increased risk for trisomy 18 or trisomy 21, abnormal maternal serum screen indicating increased risk for neural tube defects and ultrasound abnormality). Differences in detection rates were observed to depend on clinical indication and presence or absence of ultrasound abnormalities. The detection rate ranged from 18.2 to 82.6% depending on the clinical indication. The detection rates of abnormalities significant to the pregnancy being evaluated (i.e. abnormalities excluding familial balanced rearrangements and familial markers) were between 28.6 and 86.4%. The presence of ultrasound abnormalities increased the detection rate from 72.2 to 92.5% for advanced maternal age and from 78.6 to 91.3% for abnormal maternal serum screen, indicating increased risk for trisomy 18 or trisomy 21. With regard to residual risk, the risk for a clinically significant abnormality decreased from 0.9–10.1%, prior to the interphase FISH assay, to a residual risk of 0.6–1.5% following a normal interphase FISH result in the 4 groups studied. Providing patients with detection rates and residual risks, most relevant to their situation (clinical indication and presence or absence of ultrasound abnormality) during counseling, could help them better understand the advantages and limitations of interphase FISH in their prenatal diagnostic evaluation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Ring chromosome 21 is a rare chromosome anomaly often associated with mental retardation and dysmorphic features. Less commonly, the ring chromosome can be familial and associated with a normal phenotype. Phenotypically normal female carriers, however, are at increased risk of having children with Down syndrome, mosaic monosomy 21, and variable duplication or deletion of chromosome 21. Because of the relative mitotic and meiotic instability of ring chromosomes, abnormal cytogenetic findings encountered during prenatal diagnosis may not reflect the true genetic status of the fetus. This is a report of a phenotypically normal female carrier of a familial ring 21 chromosome. Prenatal diagnosis on her twin pregnancy revealed a mosaic 46,XX,r(21)(p13;q22) (77 per cent)/45,XX, – 21 in one fetus and a normal male karyotype in the second. The pregnancy was carried to term. Both infants are completely normal, with a non-mosaic ring 21 karyotype from the lymphocytes of one twin. The diagnostic uncertainty and problematic genetic counselling related to fetal cytogenetic abnormalities are the subjects of this report.  相似文献   

14.
In a routine application of commercially available centromeric DNA probes for the prenatal screening of common trisomies involving the autosomes 13, 18, and 21, and sex chromosomes, four cases of discrepancy between fluorescence in situ hybridization (FISH) results and follow-up cytogenetic analysis were observed from a total of 516 cases of amniocentesis. In three of these cases, the results were false negative, and in one false positive. In this case, amniocentesis was performed because of a positive triple test in a 34-year-old woman with previous infertility treatment. The alpha satellite DNA probe for chromosomes 13/21 revealed five signals in 50 per cent of uncultured amniocytes, while standard cytogenetic analysis showed a normal karyotype. FISH analysis on metaphase chromosomes demonstrated the location of the additional signal in the centromeric region of chromosome 22. This additional signal was also present in the centromeric region of chromosome 22 of the mother, providing evidence for a possible inherited polymorphism in chromosome 22 responsible for unspecific hybridization with the alpha satellite probe for chromosomes 13/21 in this case. The observed polymorphism in centromeric regions may contribute to unreliability of the use of the 13/21 alpha satellite probe for prenatal screening by FISH.  相似文献   

15.
We describe a set of monozygotic (MZ) female twins, one of whom presented with a typical Turner syndrome (TS) phenotype and the other a normal female phenotype. Prenatal fetal ultrasonographic examination showed a monochorial diamniotic pregnancy with a hygroma colli and growth delay in Twin A and no anomalies in Twin B. Karyotypic analysis performed on fetal blood samples demonstrated a 46,XX/45,X (23/2) mosaicism in Twin A and a normal 46,XX chromosome constitution in Twin B. At birth, Twin A presented with a typical TS and Twin B had a normal female phenotype. Postnatal cytogenetic investigation of blood lymphocytes showed the same 46,XX/45,X mosaicism in both twins: 46,XX/45,X (40/7) in Twin A and 46,XX/45,X (40/5) in Twin B. Further investigations at the age of 10 months showed in Twin A a 46,XX/45,X (98/2) mosaicism in lymphocytes and 100% of 45,X (50 analysed cells) in fibroblasts, and in Twin B a normal 46,XX (100 analysed cells) chromosome constitution in lymphocytes but a mild 46,XX/45,X (78/2) mosaicism in fibroblasts. Monozygosity was confirmed by molecular analysis. To our knowledge, this is the first report of prenatal diagnosis of MZ female twins discordant for TS. Review of reported sets of MZ female twins (eight cases) or triplets (one case) discordant for TS shows, as in the present case, that the phenotype correlates better with the chromosomal distribution of mosaicism in fibroblasts than in lymphocytes. In the blood of MZ twins chimerism may modify the initial allocation of the mosaicism. These results suggest that, in cases of prenatal diagnosis of MZ female twins discordant for TS, the phenotype of each twin would be better predicted from karyotype analysis of cells from amniotic fluid than from fetal blood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Prenatal cytogenetic study of chorionic villi showed a discrepancy between a normal female karyotype 46,XX in the direct preparation after short-term incubation, and a 45,X karyotype in the long-term culture. The subsequent amniocentesis revealed a normal karyotype in three cultures and a 45,X/46,XX mosaicism in one culture. Cytogenetic analysis of chorionic villi after termination of the pregnancy showed a normal karyotype in the direct preparation and a 45,X/46,XX mosaicism in the long-term culture. Fetal lymphocytes showed normal karyotypes, whereas fibroblast cultures revealed a 45,X/46,XX mosaicism.  相似文献   

17.
We describe a 4-year-old female child with severe global mental retardation, myoclonic epilepsy, proximal hypotonia and dysmorphisms, whose prenatal diagnosis following amniocentesis revealed a constitutional female karyotype carrying a t(1;15)(q10;p11) familial reciprocal translocation. Post-natal high-resolution karyotype, Fluorescence in situ hybridization (FISH) screening for subtelomeric rearrangements, VNTR search for UPD15 in the blood and fibroblast, and WCP1 and 15 in the mother, failed to provide an explanation for the complex clinical phenotype of the proband. Since the pachytene configuration of the translocated chromosomes defines a high probability of 3:1 segregation, an extensive workup was undertaken to look for a possibly cryptic mosaicism. Four percent of the cells with trisomy 15 was found in the peripheral blood lymphocytes examined by classical cytogenetic technique and interphase FISH analysis. The clinical features associated with cryptic trisomy 15 mosaicism and the problems concerning prenatal diagnosis and genetic counselling for carriers of translocations at high risk of 3:1 segregation are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Since 1987, we have had experience with 13 prenatal diagnoses of 11 women at risk for the fragile X syndrome by cytogenetic studies on amniotic fluid cultures. The induction method included TC 199 medium and methotrexate. Results were obtained in all cases. Ten were males and three were prenatally diagnosed as being affected. Three were females and none of them was fra(X)-positive. Results were confirmed in 10/13 cases. In these cases, we had neither false-positive nor false-negative results.  相似文献   

19.
We examined cytological and cytogenetic parameters of 1076 oocytes and 385 zygotes that failed to develop post in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Out of 1076 oocytes, 894 (83%) arrested oocytes showed a first polar body and were thus assumed arrested at metaphase II while the remainder showed no polar body. In the group of oocytes with a polar body, 20.5% had an abnormal karyotype. Cytologically, premature sperm chromosome condensation was noted in 28.3% of uncleaved oocytes. This high PCC can be explained by the different grades of oocyte maturity from one center to another. Oocytes from older women showed no increased aneuploidy but did show increased premature chromosome condensation. Analysis by classical technique of 220 uncleaved zygotes showed 91 with highly condensed chromosomes, 53 with asynchrony of condensation, 31 with pulverized chromosomes, and 45 arrested at the first somatic metaphase. Out of 385 arrested zygotes, 165 were explored by in situ hybridization. FISH using a set of 7 chromosome-specific probes showed aneuploidy in the chromosomes analyzed (13, 16, 18, 21, 22, X, Y) in 21.8% of blocked zygotes (19–25% depending on morphology). Extrapolating to other chromosomes, we expect that a vast majority of blocked zygotes and oocytes probably carry chromosome abnormalities. These data demonstrate the contributions of chromosome disorder in early embryo development blocking and implantation failure. Certainly, the issue of cytoplasm and nuclear immaturity and their relation to each other and to chromosome abnormalities provides a fertile area for future investigation in ART. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The nature and origin of two de novo small marker chromosomes found at prenatal diagnosis were determined by fluorescence in situ hybridization using chromosome centromere-specific probes and chromosome-specific plasmid libraries. One marker was found in a mosaic state and was shown to be an i(18p). The second marker was characterized as an inv dup(22). We conclude that molecular cytogenetic analysis contributes to the identification of marker chromosomes and therefore facilitates genetic counselling and decision-making for the parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号