首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A field demonstration of an enhanced in-situ bioremediation technology was conducted between March 1998 and August 1999 at the ITT Industries Night Vision (ITTNV) Division plant in Roanoke, Virginia. The bioremediation process was evaluated for its effectiveness in treating both chlorinated and nonchlorinated volatile organic compounds (VOCs) in groundwater located in fractured bedrock. Chlorinated compounds, such as trichloroethene (TCE), in fractured bedrock pose a challenging remediation problem. Not only are chlorinated compounds resistant to normal biological degradation, but the fractured bedrock presents difficulties to traditional techniques used for recovery of contaminants and for delivery of amendments or reagents for in-situ remediation. The demonstration was conducted under the U.S. Environmental Protection Agency's Superfund Innovative Technology Evaluation (SITE) program. The SITE program was established to promote the development, demonstration, and use of innovative treatment technologies for the cleanup of Superfund and other hazardous waste sites. This article presents selected results of the demonstration and focuses on understanding the data in light of the fractured bedrock formation. © 2002 Wiley Periodicals, Inc.  相似文献   

2.
The distribution of volatile organic compounds (VOCs) in fractured shale overlain by thin (< 10 feet) overburden at the Watervliet Arsenal near Albany, New York, was initially determined by sampling water from the fracture network using packer systems in boreholes and also using conventional monitoring wells. Furthermore, short‐term pumping and injection tests were conducted and the boreholes were logged using a variety of geophysical and hydrophysical tools. Tetrachloroethene is the dominant VOC in the groundwater, with lesser concentrations of trichloroethene and degradation products (cis‐1,2‐dichloroethene, trans‐1,2‐dichloroethene, and vinyl chloride). The vertical VOC distributions in the rock matrix were obtained from continuous‐cored holes from which small rock samples, collected at many depths between 18 and 150 feet below ground surface, were analyzed. The rock core VOC concentrations were determined by methanol extraction of crushed rock followed by direct methanol injection onto a gas chromatograph and subsequent estimation of rock porewater VOC concentrations. The rock core data support the concept that diffusion‐driven mass transfer has caused nearly all the VOC mass initially present in the fractures to now reside in the rock matrix, which has a porosity three or four orders of magnitude larger than the bulk fracture porosity. The results of the site characterization indicate that an effective site investigation strategy in fractured shale must include characterization of both the fracture and matrix contaminant distribution. These results also indicate that the most favorable remediation technologies for this fractured shale are those that will destroy VOCs in the rock matrix, particularly contaminants in the sorbed phase, and also destroy the VOC mass in the fractures including both dissolved and immiscible phases. The site characterization resulted in the selection of potassium permanganate for an in situ chemical oxidation pilot study. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
Significant microbial reductive dechlorination of [1,2 14C] cis‐dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water‐only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron‐donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron‐donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration‐based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron‐donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix. © 2012 Wiley Periodicals, Inc.*  相似文献   

4.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

5.
An integrated methodology is developed to quantify the geostatistical and transport properties of fractured media at multiple scales. Such information is helpful in developing numerical models and estimating the up-scaled transport coefficients of fractured formations. An oil-contaminated fractured site, overlying granite rock and situated in northern Spain, is investigated, and a macroscopic geological model that quantifies the regional distribution of faults and fractures over the entire area is established. The methodology is based on the measurement of fractured outcrops in the field (scale ~1-100 m), the collection of representative fractured samples and measurement of the fracture aperture (scale ~0.01-1 mm), and the analysis of macroscopic characteristics (scale ~1-5 km) of fracture/faults. The multi-scale fracture properties are utilized to construct a discrete fracture/fault network model which provides input data to a macroscopic simulator of contaminant transport in fractured porous media. The transient NAPL migration pathways are predicted for one scenario of pollution. Such information is helpful in the risk assessment of fractured contaminated sites.  相似文献   

6.
Detailed field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large‐scale (20 km x 25 km domain) 3‐D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2‐D DFN transport model (FRACTRAN) to evaluate transport along a 1,000‐m flowpath from the source represented as a 2‐D vertical cross‐section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous‐phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The performance assessment of high level radioactive waste disposal has emphasized the role of colloids in the migration of radionuclides in the geosphere. Previous literature [Nagasaki S, Tanaka S, Suzuki A. Fast transport of colloidal particles through quartz-packed columns. J. Nucl. Sci. Technol. 1975;30(11):1136] indicates that owing to hydrodynamic chromatography the colloid velocity may not be equal to that of groundwater. Using hydrodynamic chromatography, this work investigates the effects of the size of colloidal particles on the radionuclide migration facilitated by colloids in a single fractured porous rock. Also, a methodology is proposed to develop a predictive model to assess transport within the fracture rock as well as various other phenomenological coefficients, particularly the size of colloidal particles. In addition, a fully developed concentration profile for non-reactive colloids in the fracture is developed to elucidate hydrodynamic chromatography of colloids in geological media. The external forces acting on colloidal particles hypothesized in the model proposed herein include inertial force, van der Waals attractive force, double layer force as well as gravitational force. The dispersion coefficient of colloids and the distribution coefficient for radionuclides with colloids are also considered as they pertain to the size of the colloid. In addition, the size distributions of colloids are utilized to investigate the effects of polydispersed colloids.  相似文献   

8.
To date, most of the development of unexploded ordnance (UXO)-related requirements and procedures have been accomplished by the U.S. Army Corps of Engineers and the U.S. Army Toxic and Hazardous Materials Agency. The U.S. Navy and U.S. Air Force also have a significant requirement for environmentally related UXO expertise. This article traces the evolution of the UXO field, as developed by small businesses and the various branches of the U.S. Army, and describes the implications of conducting an environmental investigation or remediation in an area contaminated, or suspected to be contaminated, with UXO. Lastly, the basic procedures and the tools and equipment used to accomplish UXO decontamination are described to inform field managers of the impact that UXO hazards can have on their overall project.  相似文献   

9.
A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in‐situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1‐trichloroethane (TCA) and its daughter products, 1,1‐dichloroethene (DCE) and 1,1‐dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in‐situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short‐term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc.  相似文献   

10.
Using a large data set, a preliminary investigation has been made to evaluate the usefulness of stable isotope ratios for improving our understanding of methane and carbon dioxide generation in landfills. Included are approximately 130 landfill gas samples from across the U.S.A., and 18 recent samples from: (1) an Argonne Laboratory study area in the Brea-Olinda Landfill, Orange County, California (U.S.A); and (2) several Los Angeles County landfills, California (U.S.A). The following isotope ratios were examined: δ13C for methane, δ13C for carbon dioxide and δD for methane. Using simple ratio plots supplemented by mass-balance calculations, these data show promise for indicating the relative contributions of the four major carbon cycle processes in landfills, namely: (1) direct oxidation of organic material to carbon dioxide; (2) methane generation from fermentation (acetate cleavage); (3) methane generation from carbon dioxide reduction; and (4) methane oxidation to carbon dioxide by methanotrophic bacteria. Both the methane generation and oxidation reactions are central to an explanation of the trends discussed herein. The data also suggest that direct oxidation of organic matter in the refuse may be contributing to the observed isotopic ratios in some cases. The trends observed at the Brea-Olinda site were similar to trends using the large U.S. database, suggesting that isotopic techniques may be useful to better constrain carbon cycle processes common to all landfill settings.  相似文献   

11.
The most common means for disposing of municipal solid waste is burial in a sanitary landfill. However, many landfill owners significantly underestimate the total cost of landfill disposal by considering only land and operating costs, ignoring external physical and social costs associated with landfills. This paper proposes an approach to estimating (in monetary terms) the external costs arising from the development and operation of a landfill. All cost information is based on typical U.S. landfill cost structures. The approach is illustrated by applying it to a case study of a proposed landfill in Durham, North Carolina (U.S.A.). This case study demonstrates that the method can be applied easily and yields reasonable results.  相似文献   

12.
A new process for enhancing in-situ remediation of low-permeability soil and rock formations is presently under development at the Hazardous Substance Management Research Center (HSMRC). The patented process, known as ?pneumatic fracturing,”? consists of injecting high-pressure air or other gas into contaminated geologic formations at controlled flow rates and pressures. In fine-grained soils such as clay, pneumatic fracturing creates conductive channels in the formation, thereby increasing the permeability and exposed surface area of the contaminated soil. The potential benefits of pneumatic fracturing are significant, since in-situ remedial technologies are essentially limited by the pore gas exchange rate of the soil being treated. This article describes the results of a recent demonstration of pneumatic fracturing at an industrial site to enhance a volatile organic compound (VOC) extraction system. After establishing the baseline removal rate of soil gas effluent from the clay, soil surrounding the extraction system was fractured to enhance VOC with drawal. A substantial improvement in the VOC removal rate was observed, including: (1) flush effluent concentrations that increased up to 200 times; and (2) air flows in the formation that increased up to 1,000 times.  相似文献   

13.
Expert software-based decision support is speeding the process of defining environmental hazards and identifying remedial responses for the U.S. Department of Energy's (DOE) hazardous waste cleanup projects throughout the United States. Pacific Northwest Laboratories' (PNL) Remedial Action Assessment System (RAAS), and associated Technology Information System (TIS), written for Macintosh computers (soon for PC-compatible computers), sort through an encyclopedic data base to help environmental engineers prepare the most appropriate remedial strategy. The system has been available to DOE and other U.S. government engineers since last year and will soon be commercially available.  相似文献   

14.
Plastic items in some portions of municipal solid waste (MSW), particularly from households and restaurants, have long been viewed as a disposal problem and a symbol of a "throwaway society". There is no question that the amount of plastics in solid waste is growing. However, this observation alone should not cause an hysteria of public policies for the separate management of the plastics or any other portion of the waste. The amount of plastics, and the contribution of the items discarded, must be viewed holistically in setting a solid waste management policy. This paper questions the basis for some U.S. plastics waste policy proposals by reviewing recent U.S. data on the effect of plastics on waste reduction, and the fate of discarded plastics products. Some alternative future policy directions are also discussed.  相似文献   

15.
The self-sealing/self-healing (SS/SH) barrier concept is based on the principle that two or more parent materials placed in vertical or horizontal layers will react at their interfaces to form insoluble reaction products. These products constitute a seamless impermeable seal, which is resistant to the transmission of leachate and contaminants. A SS/SH liner formulation was developed in the laboratory and demonstrated at the Sudokwon landfill site in South Korea. Laboratory testing results indicated that a seal with a hydraulic conductivity less than 10(-9) m/s formed after two to four weeks of curing at room temperature, and the seal healed itself after it was fractured. The use of the soil from the Sudokwon landfill site instead of sand as the matrix of the parent materials in the SS/SH liner retarded the sealing and healing of the seal, but did not show an obvious effect on the overall sealing and healing capacity of the seal at early stages. The construction and installation of the field demonstration SS/SH liner were carried out in the same way as for a soil cement liner. The quality of the liner was ensured by the enforcement of quality analysis/quality control procedures during installation. A single sealed ring infiltration test was performed on the field demonstration liner 36 days after the installation was completed. The measurement of water infiltration rate indicated that the liner healed after it was fractured. However, the long-term sealing and healing capacity needs to be further investigated.  相似文献   

16.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
The U. S. Army Environmental Center (USAEC) is leading an effort to update the Remediation Technologies Screening Matrix and Reference Guide, Third Edition under the auspices of the Federal Remediation Technologies Roundtable (FRTR). Its purpose is to create a comprehensive “Remediation Technologies Yellow Pages” for use by those responsible for environmental cleanup. The Guide is being produced as a multiagency cooperative effort published under the FRTR. Members of this effort include USAEC, the U. S. Army Corps of Engineers (USACE), the Naval Facilities Engineering Service Center (NFESC), the Air Force Center for Environmental Excellence (AFCEE), the Environmental Protection Agency (EPA), the Department of Energy (DOE), the Department of the Interior (DOI), and the Interstate Technologies Regulation Cooperative (ITRC). This article provides a comprehensive look at environmental technology information provided in the electronic user-defined Remediation Technologies Screening Matrix and Reference Guide.  相似文献   

18.
Forward modeling of borehole radar data for a series of synthetic discrete-fracture network (DFN) models provides a conceptual framework for interpreting experimental field data at fractured rock sites. A finite-difference time-domain (FDTD) radar wave propagation model was developed for this purpose. Synthetic examples demonstrate the utility of single-hole reflection-mode and cross-hole transmission-mode borehole radar for (1) identification of fracture location and orientation, and (2) identification of fracture pore-fluid properties, which might change as a result of tracer tests or flooding exercises in support of resource development or site remediation. A two-dimensional, synthetic DFN was generated statistically based on hypothetical distributions of fracture length, orientation, aperture, permeability, and inter-connectivity. The DFN includes a zone of permeable fractures embedded within a network of lower-permeability fractures and a low-permeability rock matrix. We modeled the unconnected and non-permeable fractures as being filled with freshwater. To simulate tracer experiments, contaminant releases, or engineered-remediation processes, we considered alternately the inter-connected, permeable fractures to be filled with freshwater air, or saline water (tracer). Synthetic radar data sets for both single-hole reflection and cross-hole transmission modes were generated. The features in synthetic radargrams were then examined and compared to the DFN model to evaluate the likelihood of identifying fracture location, orientation, and pore fluid in field situations. This comparison demonstrates that (1) the replacement of freshwater with saline water in permeable fractures generally increases the amplitude of reflections from permeable, connected fractures; and (2) in general, radar reflection-mode data contains more information about fracture properties than transmission-mode data.  相似文献   

19.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
States use a variety of approaches to encourage landowners and loggers to apply ecologically-sustainable timber harvesting practices, the latter generically referred to as timber harvesting guidelines. A survey of 37 state forestry agency administrators in the eastern U.S. (defined as a contiguous region with the northwest and southwest borders being North Dakota and Texas, respectively) was conducted in 2000 to assess the extent and nature of state guideline programs and the various methods by which states encourage their use. The study found states in the eastern U.S. use a variety of policy tools to promote guideline use, with certain policy tools more common for certain target audiences (e.g., loggers) as well as the types of resources (e.g., wildlife habitat) addressed by the guidelines. Eighty-three percent of the programs directed at encouraging forest landowners in the eastern U.S. to use the timber harvesting practices identified in their state guidebooks are technical assistance, educational, or cost-share programs. Technical assistance and education programs are the most common policy tools used to assist loggers in applying sustainable harvesting practices. Technical assistance and cost-share programs consistently rank among the most effective policy tools for encouraging loggers and landowners to apply the guidelines. Comparing the level of program investment to perceived benefits, assistance programs and education programs rank most efficient landowner programs, whereas premium prices for products and preferential access to contracts are the two most efficient programs directed at loggers. The paper concludes with an assessment of emerging trends and additional information needs associated with encouraging the application of sustainable timber harvesting practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号