首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cytogenetic studies of spontaneous abortions or intrauterine fetal death depend on conventional tissue culturing and karyotyping. This technique has limitations such as culture failure and selective growth of maternal cells. Fluorescent in situ hybridization (FISH) using specific probes permits diagnosis of aneuploidies but is limited to one or a few chromosomal regions. Comparative genomic hybridization (CGH) provides an overview of chromosomal gains and losses in a single hybridization directly from DNA samples. In a prospective study, we analyzed by CGH trophoblast cells from 21 fetuses in cases of spontaneous abortions, intrauterine fetal death or polymalformed syndrome. Six numerical chromosomal abnormalities including one trisomy 7, one trisomy 10, three trisomies 18, one trisomy 21 and one monosomy X have been correctly identified by CGH. One structural abnormality of the long arm of chromosome 1 has been characterized by CGH. One triploidy and two balanced pericentromeric inversions of chromosome 9 have not been identified by CGH. Sexual chromosomal constitutions were concordant by both classical cytogenetic technique and CGH. Contribution of trophoblast analysis by CGH in embryo-fetal development anomalies is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
We describe three cases in which we used fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) and comparative genomic hybridization (CGH) to characterize Y chromosome structural anomalies, unidentifiable by conventional G-banding. Case 1 was a 46,X,+mar karyotype; FISH analysis revealed an entire marker chromosome highlighted after hybridization with the Y chromosome painting probe. The PCR study showed the presence of Y chromosome markers AMG and SY620 and the absence of SY143, SY254 and SY147. CGH results confirmed the loss of Yq11.2-qter. These results indicated the presence of a deletion: del(Y)(q11.2). Case 2 was a 45,X [14]/46,XY[86] karyotype with a very small Y chromosome. The PCR study showed the presence of Y chromosome markers SY620 and AMG, and the absence of SY143, SY254 and SY147. CGH results showed gain of Yq11.2-pter and loss of Yq11.2-q12. These results show the presence of a Yp isodicentric: idic(Y)(q11.2). Case 3 was a 45,X,inv(9)(p11q12)[30]/46,X,idic(Y)(p11.3?),inv(9)(p11q12)[70] karyotype. The FISH signal covered all the abnormal Y chromosome using a Y chromosome paint. The PCR study showed the presence of Y chromosome markers AMG, SY620, SY143, SY254 and SY147. CGH only showed gain of Yq11.2-qter. These results support the presence of an unbalanced (Y;Y) translocation. Our results show that the combined use of molecular and classical cytogenetic methods in clinical diagnosis may allow a better delineation of the chromosome regions implicated in specific clinical disorders. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
14.
15.
16.
Marker or ring X [r(X)] chromosomes of varying size are often found in patients with Turner syndrome. Patients with very small r(X) chromosomes that did not include the X-inactivation locus (XIST) have been described with a more severe phenotype. Small r(X) chromosomes are rare in males and there are only five previous reports of such cases. We report the identification of a small supernumerary X chromosome in an abnormal male fetus. Cytogenetic analysis from chorionic villus sampling was performed because of fetal nuchal translucency thickness and it showed mosaicism 46,XY/47,XY,+r(X)/48,XY,+r(X),+r(X). Fluorescence in situ hybridizations (FISH) showed the marker to be of X-chromosome origin and not to contain the XIST locus. Additional specific probes showed that the r(X) included a euchromatic region in proximal Xq. At 20 weeks gestation, a second ultrasound examination revealed cerebral abnormalities. After genetic counselling, the pregnancy was terminated. The fetus we describe is the first male with a mosaic XIST-negative r(X) chromosome identified at prenatal diagnosis. The phenotype we observed was probably the result of functional disomy of the genes in the r(X) chromosome, secondary to loss of the XIST locus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Cytogenetic studies of cultured amniocytes demonstrated a karyotype of 46, XX/47, XX,+mar. A bisatellited, dicentric, distamycin-DAPI negative, NOR-positive marker was present in 76 per cent of the metaphases examined. Similar markers have been associated with cat eye syndrome (CES). We report on the utilization of fluorescence in situ hybridization (FISH) with a 14/22 a-satellite probe and a chromosome 22-specific cosmid for locus D22S9 to determine the origin of the prenatally detected supernumerary marker chromosome. FISH studies demonstrated that the marker is a derivative of chromosome 22 and enabled us to provide the family with additional prognostic information.  相似文献   

18.
To determine the fetal sex on 30 women who were 16–20 weeks pregnant, about 100 000 maternal blood nucleated cells were analysed by means of fluorescence in situ hybridization (FISH) with a Y-chromosome-specific DNA probe. Cells with the hybridization signal were detected in 12 of the 30 women. All the 12 mothers gave birth to a male child. Of the other 18 women who had no Y-positive cells in the peripheral blood, 14 gave birth to a female child and four gave birth to a male child. These false-negative results probably occurred because the number of cells examined was inadequate. The data obtained in this study suggest that fetal sex determination using maternal peripheral blood with FISH is possible and that this diagnostic method will be clinically useful when more cells are analysed.  相似文献   

19.
20.
亚硝基胍对泥鳅红细胞微核及核异常的诱发   总被引:84,自引:0,他引:84       下载免费PDF全文
研究了诱变剂对泥鳅红细胞微核和核异常的诱发作用,以寻求较为简便的检测水体中污染物对遗传物质的损害程度及毒理效应的方法。试验以亚硝基胍(MNNG)作为诱变剂,研究其不同浓度和染毒时间对泥鳅红细胞微核形成和核异常的影响。试验结果表明,在一定浓度范围内,微核细胞率与亚硝基胍浓度呈正相关;但当浓度过高时,微核细胞率反而降低。此外,研究还发现,随着亚硝基胍浓度的升高,微核细胞率出现高峰的时间也相应提前。从试验结果来看,微核测定法确是遗传毒理学试验中一个较为理想的监测手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号