首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the fetal sex on 30 women who were 16–20 weeks pregnant, about 100 000 maternal blood nucleated cells were analysed by means of fluorescence in situ hybridization (FISH) with a Y-chromosome-specific DNA probe. Cells with the hybridization signal were detected in 12 of the 30 women. All the 12 mothers gave birth to a male child. Of the other 18 women who had no Y-positive cells in the peripheral blood, 14 gave birth to a female child and four gave birth to a male child. These false-negative results probably occurred because the number of cells examined was inadequate. The data obtained in this study suggest that fetal sex determination using maternal peripheral blood with FISH is possible and that this diagnostic method will be clinically useful when more cells are analysed.  相似文献   

2.
3.
Recovering and analysing fetal erythrocytes from maternal blood is being pursued for non-invasive prenatal genetic diagnosis. We report the observation of 46, XY/47, XXY mosaicism in fetal cells from a woman whose first-trimester chorionic villus sampling (CVS) initially showed only 46, XY. Only after exhaustive (500 cells) analysis were four XXY cells found in cultured villi.  相似文献   

4.
In our previous work we have isolated fetal cells from maternal blood and used fluorescent in situ hybridization (FISH) for chromosome-specific probes to detect aneuploidy. Current efforts in the Baylor College of Medicine programme are focusing on obtaining consistency in flow-sorting methodology and on determining sensitivity and specificity. To this end, systematic evaluation of five glycophorin A (gly A) antibodies all produced agglutination, leading us to abandon the use of gly A antibodies for positive selection of fetal cells. Conversely, we have found LDS-751 to be useful for nuclear selection. CD45 negative selection can best be accomplished by the use of flasks coated with goat antibodies against mouse antibodies. Positive selection by flow sorting for either CD71+ cells or gamma-globin-positive cells seems to be successful. Using these two approaches, we have recently detected male (fetal) cells in pregnancies in which the fetus was 46, XY in 10 of 18 and in 12 of 14 cases, respectively.  相似文献   

5.
6.
7.
8.
Fetal cells unequivocally exist in and can be isolated from maternal blood. Erythroblasts, trophoblasts, granulocytes and lymphocytes have all been isolated by various density gradient and flow sorting techniques. Chromosomal abnormalities detected on isolated fetal cells include trisomy 21, trisomy 18, Klinefelter syndrome (47,XXY) and 47,XYY. Polymerase chain reaction (PCR) technology has enabled the detection of fetal sex, Mendelian disorders (e.g. β-globin mutations), HLA polymorphisms, and fetal Rhesus (D) blood type. The fetal cell type that has generated the most success is the nucleated erythrocyte; however, trophoblasts, lymphocytes and granulocytes are also considered to be present in maternal blood. Fetal cells circulate in maternal blood during the first and second trimesters, and their detection is probably not affected by Rh or ABO maternal-fetal incompatibilities. Emphasis is now directed toward determining the most practical and efficacious manner for this technique to be applied to prenatal genetic diagnosis. Only upon completion of clinical evaluations could it be considered appropriate to offer this technology as an alternative to conventional invasive and non-invasive methods of prenatal cytogenetic diagnosis.  相似文献   

9.
10.
We investigated a case of massive feto-maternal bleeding by using negative magnetic cell sorting (MACS) and fluorescent in situ hybridization (FISH). A 37-year-old pregnant woman had an uncomplicated amniocentesis for advanced maternal age at 16 weeks' gestation. The fetal karyotype was 46, XY. At 19 weeks' gestation, she had a minor car accident and slight vaginal bleeding. A subsequent Kleihauer-Betke test showed a 140 ml feto-maternal haemorrhage. Serial sonographic examinations indicated a normal fetus and placenta. We performed FISH analysis on maternal peripheral blood at 25 weeks. Anti-CD45 and MACS were used to deplete maternal leucocytes, enriching the proportion of fetal nucleated erythrocytes present. The isolated cells were analysed by using dual-colour FISH with X and Y specific probes. Approximately 65 800 nucleated cells were obtained after MACS depletion. A total of 234 cells were analysed by FISH. The results revealed that 70 of the nucleated cells (30 per cent) were male with one X and one Y signal. Among these cells, six male metaphases were observed in spontaneously dividing cells.  相似文献   

11.
FISH is a quick, inexpensive, accurate, sensitive and relatively specific method for aneuploidy detection in samples of uncultured chorionic villus cells and amniotic fluid cells. FISH allows detection of the autosomal trisomies 13, 18 and 21 and X and Y abnormalities and any other chromosome abnormality for which a specific probe is available. The detection rate of these abnormalities is high in informative samples which have a concordance of > 99.5% with cytogenetic results. A relatively high number of abnormal cases are found in uninformative samples. However, such samples should be regarded as samples to be investigated further. Clinical experience with the use of FISH for prenatal diagnosis is now beyond 10,000 cases; a number of clinical protocols and smaller trials have also been carried out, resulting in 90% of attempted analyses giving informative results with a high detection rate and extraordinarily low false-positive and false-negative rates Unsolved problems remain, such as occasional technical failures, admixtures of maternal blood and up to 20% uninformative scoring results, especially for abnormal specimens. FISH is at present used as an adjunct to classical cytogenetic analysis. However, this should not be interpreted as meaning that FISH could not be used as a methodology in its own right. If FISH were to be considered a Diagnostic test then this might be the case, due to the risk of false-negative and false-positive results and the fact that FISH does not allow a diagnosis of certain structural abnormalities. If, on the other hand, FISH is considered a screening test, which means that in all abnormal (or indeterminate) cases, classical cytogenetic analysis would follow the abnormal screening test, the accuracy which is potentially higher than for other screening methods, for example in cases of trisomy 21, justifies FISH as a prenatal screening test in its own right.  相似文献   

12.
13.
14.
Fetal cells were enriched from maternal blood using density gradient centrifugation of Histopaque followed by magnetic-activated cell sorting (MACS) to select CD71-positive cells. For each specimen, cells partially purified by Histopaque were split into equal portions, and each portion was subjected to purification by MACS in parallel. Cells before and after MACS were subjected to dual-color fluorescence in situ hybridization (FISH) analysis with X- and Y-chromosome-specific probes. We found that the hybridization rates were decreased by approximately 10% after MACS based on duplicated analysis for each sample. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this study was to detect fetal HLA-DQα gene sequences in maternal blood. HLA-DQα genotypes of 70 pregnant women and their partners were determined for type A1. We specifically sought couples where the father, but not the mother, had genotype A1. In 12 women, maternal blood samples were flow-sorted. Candidate fetal cells were isolated and amplified by using PCR primers specific for a paternal HLA-DQα A1 allele. Fetal HLA-DQα A1 genotype was predicted from sorted cells; amniocytes or cheek swabs were used for confirmation. Six of twelve sorted samples had amplification products indicating the presence of the HLA-DQα A1 allele; 6/12 did not. Prediction of the fetal genotype was 100 per cent correct, as determined by subsequent amplification of amniocytes or cheek swabs. We conclude that paternally inherited uniquely fetal HLA-DQα gene sequences can be identified in maternal blood. This system permits the identification of fetal cells independent of fetal gender, and has the potential for non-invasive prenatal diagnosis of paternally inherited conditions.  相似文献   

16.
17.
18.
Although the pathophysiology of pre-eclampsia is unknown, several studies have indicated that abnormal placentation early in pregnancy might play a key role. It has recently been suggested that this abnormal placentation may result in transfusion of fetal cells (feto-maternal transfusion) in women with pre-eclampsia. In the present study, fetal nucleated red blood cells were isolated from 20 women with pre-eclampsia and 20 controls using a very efficient magnetic activated cell sorting (MACS) protocol. The number of male cells was determined using two-color fluorescence in situ hybridization (FISH) for X and Y chromosomes. Significantly more XY cells could be detected in women with pre-eclampsia (0.61±1.2 XY cells/ml blood) compared to women with uncomplicated pregnancies (0.02±0.04 XY cells/ml blood) (Mann–Whitney U-test, p<0.001). These results suggest that fetal cell trafficking is enhanced in women with pre-eclampsia, and this finding may contribute to the understanding of the pathophysiology of the disease. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The presence of small numbers of fetal nucleated red cells in the maternal circulation has been a stimulus for the development of technologies for non-invasive prenatal genetic analysis. Our laboratory has been assessing the feasibility of density gradient centrifugation followed by magnetic activated cell sorting (MACS) of cells expressing CD32 and CD45, to deplete maternal nucleated blood cells. We have examined the efficiency of each of the steps of this procedure using cord blood from term pregnancies as a source of nucleated red blood cells. Cord blood was shown to contain highly variable numbers of nucleated red cells. Three different density gradients were examined. There was no major difference in the performances of the double and triple gradients. Density gradient centrifugation resulted in enrichments of nucleated red blood cells of about 1000-fold relative to the total cell count. However, it was apparent that the selection of the cell layers which were most enriched for these cells would result in significant losses of nucleated red cells in other layers. MACS sorting of cells using CD45 resulted in white cell depletions ranging from 7 to 34-fold. These data provide a foundation for comparison with other methods and for optimization of the MACS technique.  相似文献   

20.
We report the detection of fetal cells in the maternal circulation by enzymatic amplification of a single copy gene sequence that was fetal-specific. Fetal HLA-A2-positive cells were sorted from maternal HLA-A2-negative cells by flow cytometry and confirmed by demonstration of a fetal-specific HLA-DR4 sequence. However, this sequence could not be detected in unenriched maternal DNA prepared at 28 and 32 weeks' gestation. The sensitivity of detection was 1 HLA-DR4-positive cell in 105 HLA-DR4-negative cells. We conclude that prenatal diagnosis of paternally inherited autosomal-dominant genetic defects may be possible by selective gene amplification of maternal peripheral blood. However, preliminary enrichment for fetal cells may be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号