首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. Loya 《Marine Biology》1975,29(2):177-185
The community structure and species diversity of hermatypic corals was studied during 1969–1973, in two reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the nature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further south, which is free from oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In September, 1970, both reefs suffered approximately 90% mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was “blooming” with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. It is suggested that phosphate eutrophication and chronic oil pollution are the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and/or development of coral larvae. It is possible that chronic oil, pollution results in either one or a combination of the following: (1) damage to the reproductive system of corals; (2) decreased viability of coral larvae; (3) changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.  相似文献   

2.
Glassom  D.  Zakai  D.  Chadwick-Furman  N. E. 《Marine Biology》2004,144(4):641-651
Recruitment rates of stony corals to artificial substrates were monitored for 2 years at 20 sites along the coast of Eilat, northern Red Sea, to compare with those recorded at other coral reef locations and to assess variation in recruitment at several spatial scales. Coral recruitment was low compared to that observed on the Great Barrier Reef in Australia, but was similar to levels reported from other high-latitude reef locations. Pocilloporids were the most abundant coral recruits in all seasons. Recruitment was twofold higher during the first year than during the second year of study. There was considerable spatial variability, with the largest proportion of variance, apart from the error term, attributable to differences between sites, at a scale of 102 m. Spearmans ranked correlation showed consistency in spatial patterns of recruitment of pocilloporid corals between years, but not of acroporid corals. During spring, when only the brooding pocilloporid coral Stylophora pistillata reproduces at this locality, most coral recruitment occurred at central and southern sites adjacent to well-developed coral reefs. During summer, recruitment patterns varied significantly between years, with wide variation in the recruitment of broadcasting acroporid corals at northern sites located distant from coral reefs. Settlement was low at all sites during autumn and winter. This work is the first detailed analysis of coral recruitment patterns in the Red Sea, and contributes to the understanding of the spatial and temporal scales of variation in this important reef process.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The removal of fish biomass by extensive commercial and recreational fishing has been hypothesized to drastically alter the strength of trophic linkages among adjacent habitats. We evaluated the effects of removing predatory fishes on trophic transfers between coral reefs and adjacent seagrass meadows by comparing fish community structure, grazing intensity, and invertebrate predation potential in predator-rich no-take sites and nearby predator-poor fished sites in the Florida Keys (USA). Exploited fishes were more abundant at the no-take sites than at the fished sites. Most of the exploited fishes were either omnivores or invertivores. More piscivores were recorded at no-take sites, but most (approximately 95%) were moderately fished and unexploited species (barracuda and bar jacks, respectively). Impacts of these consumers on lower trophic levels were modest. Herbivorous and smaller prey fish (< 10 cm total length) densities and seagrass grazing diminished with distance from reefs and were not negatively impacted by the elevated densities of exploited fishes at no-take sites. Predation by reef fishes on most tethered invertebrates was high, but exploited species impacts varied with prey type. The results of the study show that, even though abundances of reef-associated fishes have been reduced at fished sites, there is little evidence that this has produced cascading trophic effects or interrupted cross-habitat energy exchanges between coral reefs and seagrasses.  相似文献   

4.
In an experimental study on the effect of parrotfish (probably Scarus taeniurus) grazing on the structure of benthic reef communities, fishes in densities of 0.6 to 1.5 parrotfish per m2 or 9 to 17 g wet weight of fish per m2 of feeding surface were found to have an optimum effect, resulting in the greatest benthic species richness and biomass on 2-dimensional surfaces. The presence of refuges (3-dimensional habitats), however, has a greater impact on bemthic community structure (number of species and biomass) than does just the density of parrotfish in such an experimental system. Coral recruitment is enhanced by the presence of refuges and, like coralline algae, is more successful under increased grazing pressure. These optimum densities of parrotfishes relate well to observed field densities where, in a collection from a Hawaiian patch reef, there were 1.1 fish or 10.8 g wet weight of parrotfish per square meter of collection area. The success of coralline algae and corals under high grazing pressure may have important consequences for the stability and structure of modern coral reefs.  相似文献   

5.
The distribution of the main herbivorous fishes (Acanthuridae, Scaridae, Siganidae) was studied across a coral reef of the Jordanian coast in the Gulf of Aqaba (Red Sea). Visual counts were realized by diving along transects (200 m long and 5 m wide), parallel to the shore, at 10 stations located from the lagoon to 40 m deep on the outer reef slope. Herbivorous reef fishes reach their highest abundance on the reef front, where 234 fishes were counted per 1,000 m2. Their density decreases on the reef flat, with an average of 150 fish 1,000 m-2, and is lowest on the outer reef slope (69 fish 1,000 m-2). Surgeonfishes form 63% of the herbivorous ichthyofauna, parrotfishes 35%, and rabbitfishes 2%. Families and species display different distributions according to biota. The Acanthuridae dominate on the reef flat, whereas the Scaridae are more numerous on the outer reef slope. The evolution of the social structure of the main species was observed: the adults generally school in the lagoon and on the reef flat, but are mainly solitary on the reef slope. The distribution of juvenile individuals is more restricted: they are concentrated on the reef front and on the upper part of the reef slope.This study is part of a cooperation programme between the University of Nice (France) and the University of Jordan, to study the ecology of the coral reefs and the surrounding waters of the Jordanian coast (Gulf of Aqaba, Red Sea)  相似文献   

6.
Loss of macroalgae habitats has been widespread on rocky marine coastlines of the eastern Korean peninsula, and efforts for restoration and creation of macroalgal beds have increasingly been made to mitigate these habitat losses. Deploying artificial reefs of concrete pyramids with kelps attached has been commonly used and applied in this study. As a part of an effort to evaluate structural and functional recovery of created and restored habitat, the macroalgal community and food web structure were studied about a year after the establishment of the artificial macroalgal bed, making comparisons with nearby natural counterparts and barren ground communities. Dominant species, total abundance, and community structure of macroalgal assemblage at the restored macroalgal bed recovered to the neighboring natural bed levels during the study period. The main primary producers (phytoplankton and macroalgae) were isotopically well separated. δ13C and δ15N values of consumers were very similar between restored and natural beds but varied greatly among functional feeding groups. The range of consumer δ13C was as wide as that of primary producers, indicating the trophic importance of both producers. There was a stepwise trophic enrichment in δ15N with increasing trophic level. A comparison of isotope signatures between primary producers and consumers showed that, while suspension feeders are highly dependent on pelagic sources, invertebrates of other feeding guilds and fishes mainly use macroalgae-derived organic matter as their ultimate nutritional sources in both macroalgal beds, emphasizing the high equivalency of trophic structure between both beds. Isotopic signatures of a few mollusks and sea urchins showed that they use different dietary items in macroalgal-barren grounds compared with macroalgal beds, probably reflecting their feeding plasticity according to the low macroalgal biomass. However, isotopic signatures of most of the consumers at the barren ground were consistent with those at the macroalgal beds, supporting the important trophic role of drifting algae. Our results revealed the recoveries of the macroalgal community and trophic structure at the restored habitat. Further studies on colonization of early settlers and the following succession progress are needed to better understand the process and recovery rate in the developing benthic community.  相似文献   

7.
A quantitative assessment of drifting net plankton crossing a reef-flat biotope was obtained on a Caribbean coral reef. The spatial distribution and abundance of plankton were sampled to provide estimates of the removal of this potential food resource by suspension-feeding populations. Sampling was largely confined to the reef flat and adjacent waters of Laurel Cay, a flourishing coral reef present on the insular shelf off southwestern Puerto Rico. A prior study provides information on the meteorological and hydrographic characteristics of this area. Evidence for plankton accrual was found in the quantitative depletion of qualitatively similar populations sampled downstream of densely populated reef communities. Numerically, the diatom crop was reduced by 91% and zooplankton by 60% in water streaming off the reef. Significant diel and seasonal variations in plankton abundance were obcerved, as well as notable differences in volume flow, the latter closely related to the local wind regime. A time course of net plankton accrual was calculated, taking into account these various factors. During the summer season (July–August), when zooplankton was relatively abundant and water movement over the reef vigorous, the total gain from plankton reached 0.25 gC/m2/day; 75% of this occurred during a 4 h period at sunrise and sunset. Plankton retained on the reef flat in January of February and in September was around 0.1 g C/m2/day. Zooplankton biomass contributed the greatest share, exceeding that of diatoms by a factor of 10 during the day and 42 in the early evening. A mean annual accrual of 0.18 g C/m2/day is equivalent to 4 to 13% of net community metabolism.  相似文献   

8.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

9.
Coral reef lagoons are generally regarded as zones of net heterotrophy reliant on organic detritus generated in more productive parts of the reef system, such as the seaward reef flat. The abundance and biomass of sediment infauna were measured seasonally for one year (1986) within the lagoon of Davies Reef, central Great Barrier Reef, to test the hypothesis that macrofaunal biomass and production of coral reef lagoons would decrease with distance from the reef flat and would change seasonally. In general, there were no simple relationships between infaunal standing stock or production and distance from the reef flat or season. Bioturbation by callianassid shrimps negatively affected the abundance of smaller infauna, suggesting a community limited by biogenic disturbance rather than by supply of organic material. Polychaetes and crustaceans were dominant amongst the smaller infauna (0.5 to 2mm) while larger animals (> 2 mm) were mostly polychaetes and molluscs. Mean biomass of infauna at both sites and all seasons was 3 181 mg C m?2. The smaller animals (0.5 to 2 mm) contributed about 40% of total macrofaunal respiration and production although they represented only 15% of the total macrofaunal biomass. The biomass of macrofauna was about equal to that of the bacteria and meiofauna, while respiration represented 10 to 20% of total community respiration. Consumption by macrofauna accounts for only 3 to 11% of total organic inputs to sediment, with a further 14 to 17% being lost by macrofaunal respiration.  相似文献   

10.
In the southern and southwestern coral reef lagoon of New Caledonia and the adjacent oceanic waters, 42 neuston samples were collected from the upper surface layer (0 to 10 cm) along nine transects from the coast to the coral barrier reef and the open ocean immediately beyond the reef, in March and April 1979. There was a progressive numerical decrease in zooplankton densities from the coast to the reef and from the reef to the open sea. Generally, 80 to 95% of the surface plankton consisted of holoplankton and 5 to 20% of meroplankton. Zooplankton was very abundant in littoral bays with a marked eutrophication. In a few samples collected in very shallow waters close to coral patches, cladocerans were numerous and constituted up to 75% of the total plankton, whilst in other samples collected above greater depths, copepods made up 60 to 85% of the total plankton. In the coral reef lagoon of south and southwest New Caledonia, typically hyponeustonic copepods (pontellids) often comprised 5% of the total copepod populations.  相似文献   

11.
A discrete spatial simulation model is developed to investigate the type and intensity of biological and physical factors influencing the structure of coral communities. The model represents reproduction, growth, and interspecific competition by coral colonies in terms of “ownership” of space in a plot of reef habitat. Using data for several eastern Pacific coral species, the model reproduces observed changes in species composition and diversity during coral community development. Model results suggest that during early successional stages, or in areas that are frequently disturbed, larval colonization and rapid growth are more important than dominance achieved by extracoelenteric digestion or by growing over another coral in acquiring and maintaining possession of reef substrate. In mature communities that remain undisturbed, dominance is the best competitive strategy. Although the model was developed to study natural and man-induced changes in the community dynamics of coral reefs, it could be adapted to study other sessile organisms where spatial pattern is an important influence on the frequency and outcome of biological interactions.  相似文献   

12.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages.  相似文献   

13.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   

14.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

15.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

16.
Levels of protein, lipid, carbohydrate, ash, and calcium in the rectal contents of a species representative of each of four trophic groups of coral reef fishes were determined. These levels and the estimated caloric levels were related to the degree to which the feces of each species were eaten by species of coprophagous fishes and to the potential nutritional value of their non-fecal foods. The potential nutritional value of feces (based on estimated caloric content), protein and lipid levels were positively correlated with the percentage of feces eaten by coprophagous fishes. Levels of calcium and ash were negatively correlated with the percentage eaten. Fecal carbohydrate level was not correlated with the degree of ingestion. Food values of these feces were at least equal to those of non-fecal foods (i.e. zooplankton, coral tissue, algae, etc.) of the coprophages. Feces produced by the coprophagous species had even lower potential food value.  相似文献   

17.
Two methods were used to assess the grazing impact of roving herbivorous fishes across a coral reef depth gradient within Pioneer Bay, Orpheus Island, Great Barrier Reef. The first technique employed was a method traditionally used to quantify herbivory on coral reefs via the (indirect) inference of herbivore impact from biomass estimates and reported feeding rates. The second method (one of a range of direct approaches) used remote underwater video cameras to film the daily feeding activity of roving herbivores in the absence of divers. Both techniques recorded similar patterns and relative levels of herbivore biomass across five reef zones at the study site. Indirect estimates of the grazing impact across the reef depth gradient of the three predominant species of herbivore broadly coincided with levels quantified directly by remote underwater video, indicating that, to a large extent, presence does correspond to function. However, the video data suggested that, for individual species in particular reef zones, the absolute level of impact may be less than that inferred from presence. In the case of the parrotfish Scarus rivulatus, the video recordings suggested that, at the reef crest, an average of 52% (±18 SE) of each m2 area of reef would be grazed each month, compared with an area of 109% (±41 SE) suggested by inferring grazing activity from presence alone. Potential biases associated with remote video recorders may explain some of the discrepancy between values. Overall, the results suggest that, for some fish groups, the indirect method of inferring function from presence can provide a good indication of relative levels of herbivore impact across a coral reef. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
White JS  O'Donnell JL 《Ecology》2010,91(12):3538-3548
Stegastes nigricans, a "farmerfish" that cultivates algal turf and defends territories from grazers and other intruders, can affect coral indirectly due to increased competition with farmed algal turf and/or reduced predation resulting from territorial aggression directed at corallivores. To investigate the indirect effects of this key ecosystem engineer on coral mortality and growth, we transplanted caged and exposed fragments of four coral species to patch reefs in French Polynesia on which we manipulated the presence of S. nigricans and turf, and to reefs naturally devoid of S. nigricans. Reef access was two to four times higher for herbivorous fishes, and two times higher for corallivorous fishes, when S. nigricans was removed, indicating that reef access is reduced for two important guilds of fishes when S. nigricans is present. Stegastes' territoriality indirectly benefited delicate acroporids (Montipora floweri and Acropora striata), yielding a twofold to fivefold reduction in skeletal loss due to lower predation frequencies in the presence of S. nigricans. Three corals, A. striata, M. floweri, and especially Porites australiensis, suffered mortality due to overgrowth significantly more frequently in the presence of farmed turf, but Pocillopora verrucosa did not. Algal abundance predicted the frequency of overgrowth for only A. striata and P. australiensis. M. floweri were more likely to be overgrown when exposed (uncaged) in the presence of S. nigricans, suggesting an interaction modification, in this case that initial predation increased susceptibility to competition with turf. In this community, the presence of S. nigricans may increase algal overgrowth of massive Porites by facilitating its turf competitors and simultaneously reduce predation of branching corals through territorial exclusion of corallivores. These indirect interactions may underlie previously documented community transitions from disturbance-resistant massive coral to recovering branching corals within S. nigricans territories.  相似文献   

19.
A technique for measuring rates of RNA and DNA synthesis in sedimentary microbial communities has been adapted from methods developed for marine and freshwater microplankton research. The procedure measures the uptake, incorporation and turnover of exogenous [2, 3H]-adenine by benthic microbial populations. With minor modification, it is applicable to a wide range of sediment types. Measurement of nucleic acid synthesis rates are reported from selected benthic marine environments, including coral reef sediments (Kaneohe Bay, Oahu, Hawaii), intertidal beach sands (Oahu and southern California) and California borderland basin sediment (San Pedro Basin), and comparisons are made to selected water-column microbial communities. Biomass-specific rates of nucleic acid synthesis in sediment microbial communities were comparable to those observed in water-column assemblages (i.e., 0.02 to 2.0 pmol deoxyadenine incorporated into DNA [ng ATP]-1 h-1 and 0.2 to 8.9 pmol adenine incorporated into RNA [ng ATP]-1 h-1). DNA synthesis rates were used to calculate carbon production estimates ranging from 2 g C cm-3 h-1 in San Pedro Basin sediment (880 m water depth) to 807 g C cm-3 h-1 in coral reef sediment from the Kaneohe Bay. Microbial community specific growth rate, (d-1), estimated from DNA synthesis rates in surface sediments ranged from 0.1 in San Pedro Basin to 4.2 in Scripps Beach (La Jolla, California) intertidal sand.  相似文献   

20.
Large predatory fishes are disproportionately targeted by reef fisheries, but little is known about their trophic ecology, which inhibits understanding of community dynamics and the potential effects of climate change. In this study, stable isotope analyses were used to infer trophic ecology of a guild of large predatory fishes that are targeted by fisheries on the Great Barrier Reef, Australia. Each of four focal predators (Plectropomus leopardus, Plectropomus maculatus, Lethrinus miniatus and Lutjanus carponotatus) was found to have a distinct isotopic signature in terms of δ13C and δ15N. A two-source mixing model (benthic reef-based versus pelagic) indicated that P. leopardus and L. miniatus derive the majority (72 and 62 %, respectively) of their production from planktonic sources, while P. maculatus and L. carponotatus derive the majority (89 and 74 %, respectively) of their production from benthic reef-based sources. This indicates that planktonic production is important for sustaining key species in reef fisheries and highlights the need for a whole-ecosystem approach to fisheries management. Unexpectedly, there was little isotopic niche overlap between three of four focal predators, suggesting that inter-specific competition for prey may be low or absent. δ15Nitrogen indicated that the closely related P. leopardus and P. maculatus are apex predators (trophic level > 4), while δ13C indicated that each species has a different diet and degree of trophic specialisation. In view of these divergent trophic ecologies, each of the four focal predators (and the associated fisheries) are anticipated to be differentially affected by climate-induced disturbances. Thus, the results presented herein provide a useful starting point for precautionary management of exploited predator populations in a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号