首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Microbial displacement in the soil is an important process for bioremediation and dispersal of wastewater pathogens. We evaluated cell movement in surface and subsurface red-yellow podzolic soil driven by advection and microbial motility and also survival of a microbial population at high pressure as is prevalent in deep soil layers. Pseudomonas fluorescens Br 12, resistant to rifampycin and kanamycin, was used as a model organism traceable in non-sterile soil. Our results showed that more than 40% of the P. fluorescens population survived under high pressure, and that microbial motility was not a major factor for its displacement in the soil. Cells were adsorbed in similar amounts to surface and subsurface soils, but more viable cells were present in the leachate of surface than in subsurface soils. The nature of this unexpected cell binding to the subsurface soil was studied by EPR, Mossbauer, NMR, and infrared techniques, suggesting iron had a weak interaction with microbes in soil. P. fluorescens movement in soil resulted mainly from convection forces rather than microbial motility. The transport of this bacterium along the transept toward groundwater encountered restricted viability, although it survived under high pressure conditions simulating those in deep soil layers.  相似文献   

2.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg(-1) degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg(-1) application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to >70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of (14)C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative (14)CO(2) was less than 1.5% of applied (14)C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

3.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

4.
Abstract

Two soils, Puyallup fine sandy loam from Puyallup, WA, and Ellzey fine sand from Hastings, FL, each with a prior history of carbofiiran exposure but with different pedological and climatological characteristics, were found to exhibit enhanced degradation toward carbofiiran in surface and subsurface soil layers. The treated Puyallup and Ellzey soils exhibited higher mineralization rates for both the carbonyl and the aromatic ring of carbofiiran when compared to untreated soils. Disappearance rates of [14C‐URL (uniformly ring labeled)] carbofiiran in the treated Ellzey soil was faster than in untreated soil, and also faster in surface soil than in subsurface soil. Initial degradation patterns in the treated Ellzey soil were also different from those in the untreated soil. The treated Ellzey soil degraded carbofuran mainly through biological hydrolysis, while untreated soil degraded carbofuran through both oxidative and hydrolytic processes.  相似文献   

5.
Anderson R  Xia L 《Chemosphere》2001,42(2):171-178
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.  相似文献   

6.
In laboratory experiments the mineralisation of 14C-labelled 1,2,4-trichlorobenzene (1,2,4-TCB) in soils was studied by direct measurement of the evolved 14CO2. The degradation capacity of the indigenous microbial population was investigated in an agricultural soil and in a soil from a contaminated site. Very low mineralisation of 1% within 23 days was measured in the agricultural soil. Whereas in the soil from the contaminated site the mineralisation occurred very fast and in high rates; up to 62% of the initially applied amount of 1,2,4-TCB were mineralised within 23 days. The transfer of the adapted microbial population into the agricultural soil significantly enhanced the mineralisation of 1,2,4-TCB in this soil, reflecting, that the transferred microbial population survived and maintained its degradation ability in the new microbial ecosystem. Additional nutrition sources ((NH4)2HPO4) increased the mineralisation rates in the first days significantly in the contaminated soil. In the soil from the contaminated site high amounts of non extractable 14C-residues were formed.  相似文献   

7.
Zhu Y  Liu H  Xi Z  Cheng H  Xu X 《Chemosphere》2005,60(6):770-778
Concentrations of HCH (hexachlorocyclohexane) and DDT (Dichlorodiphenyltrichloroethane) were determined in shallow subsurface (5-30 cm depth) and deep soil layers (150-180 cm depth) from the outskirts of Beijing, China. Concentrations of total HCHs (including alpha, beta, gamma, delta-isomers) and total DDTs (including p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT) in shallow subsurface soils ranged from 1.36 to 56.61 ng/g dw (median 5.25 ng/g), and from 0.77 to 2178 ng/g (median 38.66 ng/g), respectively, and those in the deeper layers were approximately an order of magnitude less. The spatial distribution of HCHs and DDTs reflected the known historical usage of these pesticides. No correlation between the concentrations of pesticides and soil organic matter content or clay content can be found. The factors affecting residue levels and compositions of DDT and HCH were discussed. The contour maps of beta/gamma ratios and DDT/DDE ratios for both the shallow subsurface and deep layer soils were drawn.  相似文献   

8.
The herbicide imazaquin has both an acid and a basic ionizable groups, and its sorption depends upon the pH, the electric potential (psi0), and the oxide and the organic carbon (OC) contents of the soil. Sorption and extraction experiments using 14C-imazaquin were performed in surface and subsurface samples of two acric oxisols (an anionic "rhodic" acrudox and an anionic "xanthic" acrudox) and one non-acric alfisol (a rhodic kandiudalf), treated at four different pH values. Imazaquin showed low to moderate sorption to the soils. Sorption decreased and aqueous extraction increased as pH increased. Up to pH 5.8, sorption was higher in subsurface than in surface layers of the acric soils, due to the positive balance of charges resulted from the high Fe and Al oxide and the low OC contents. It favored electrostatic interactions with anionic molecules of imazaquin. For the subsurface samples of these highly weathered soils, where psi0 was positive and OC was low, it was not possible to predict sorption just by considering imazaquin speciation and its hydrophobic partition to the organic domains of the soil. Moreover, if Koc measured for thesurface samples were assumed to represent the whole profile in predictive models for leaching potential, then it would result in underestimation of sorption potential in subsurface, and consequently result in overestimation of the leaching potential.  相似文献   

9.
Methods for the determination of tetrachlorodibenzodioxin (TCDD) in surface and subsurface soil have been verified by spiking experiments conducted at a nominal level of twice the limit of detection. The methods involve Soxhlet extraction, silica and alumina clean-up and analysis by high resolution gas chromatography/ high resolution mass spectrometry. Mass Spectrometry done under profile data control is described. The precision (accuracy) found for surface and subsurface soils were 10.8% (85%) and 10.8% (95%) respectively. Application of the surface soil procedure is illustrated by analysis of soils from the Northeast United States.  相似文献   

10.
Two methods of biostimulation were compared in a laboratory incubation study with monitored natural attenuation (MNA) for total petroleum hydrocarbon (TPH) degradation in diesel-contaminated Tarpley clay soil with low carbon content. One method utilized rapid-release inorganic fertilizers rich in N and P, and the other used sterilized, slow-release biosolids, which added C in addition to N and P. After 8 weeks of incubation, both biostimulation methods degraded approximately 96% of TPH compared to MNA, which degraded 93.8%. However, in the first week of incubation, biosolids-amended soils showed a linear two orders of magnitude increase in microbial population compared to MNA, whereas, in the fertilizer-amended soils, only a one order of magnitude increase was noted. In the following weeks, microbial population in the fertilizer-amended soils dropped appreciably, suggesting a toxic effect owing to fertilizer-induced acidity and/or NH(3) overdosing. Results suggest that biosolids addition is a more effective soil amendment method for biostimulation than the commonly practiced inorganic fertilizer application, because of the abilities of biosolids to supplement carbon. No statistically significant difference was observed between the biostimulation methods and MNA, suggesting that MNA can be a viable remediation strategy in certain soils with high native microbial population.  相似文献   

11.
The overall toxicity of soil, and the bioavailability and arsenite from soil were measured with the constructed constitutively luminescent strain Pseudomonas fluorescens OS8 (pNEP01) and with earlier published biosensor strains P. fluorescens OS8 (pTPT11) for mercury and P. fluorescens OS8 (pTPT31) for arsenite, respectively. Both spiked and authentic samples were studied. By combining bacterial assays enabled partial analysis of reasons for toxicity of environmental samples, some of which were highly toxic despite containing little or no heavy metals. The spiked soils were not toxic overall but the method of measuring concentration from water-extractable fraction or from soil-water slurry affected the results significantly. Mercury that was bound to clay even after water extraction was nevertheless found to be bioavailable to a high degree to the biosensor bacteria. Since induction of the luminescence genes takes place intracellularly the bacteria may able to apparently release mercury when in direct contact with clay particle. This type of biomobilisation was not observed with arsenite spiked soils. The same phenomenon was detected in one of the environmental samples.  相似文献   

12.
Khan KS  Joergensen RG 《Chemosphere》2006,65(6):981-987
Two incubation experiments were conducted to evaluate differences in the microbial use of non-contaminated and heavy metal contaminated nettle (Urtica dioica L.) shoot residues in three soils subjected to heavy metal pollution (Zn, Pb, Cu, and Cd) by river sediments. The microbial use of shoot residues was monitored by changes in microbial biomass C, biomass N, biomass P, ergosterol, N mineralisation, CO(2) production and O(2) consumption rates. Microbial biomass C, N, and P were estimated by fumigation extraction. In the non-amended soils, the mean microbial biomass C to soil organic C ratio decreased from 2.3% in the low metal soil to 1.1% in the high metal soils. In the 42-d incubation experiment, the addition of 2% nettle residues resulted in markedly increased contents of microbial biomass P (+240%), biomass C (+270%), biomass N (+310%), and ergosterol (+360%). The relative increase in the four microbial properties was similar for the three soils and did not show any clear heavy metal effect. The contents of microbial biomass C, N and P and ergosterol contents declined approximately by 30% during the incubation as in the non-amended soils. The ratios microbial biomass C to N, microbial biomass C to P, and ergosterol to microbial biomass C remained constant at 5.2, 26, and 0.5%, respectively. In the 6-d incubation experiment, the respiratory quotient CO(2)/O(2) increased from 0.74 in the low metal soil to 1.58 in the high metal soil in the non-amended soils. In the treatments amended with 4% nettle residues, the respiratory quotient was constant at 1.13, without any effects of the three soils or the two nettle treatments. Contaminated nettle residues led generally to significantly lower N mineralisation, CO(2) production and O(2) consumption rates than non-contaminated nettle residues. However, the absolute differences were small.  相似文献   

13.
Hseu ZY 《Chemosphere》2006,64(10):1769-1776
In the application of biosolids on agricultural lands, 4-nonylphenol (4-NP) in soils is an important environmental concern because of its associated estrogenic risk to animals and human beings. Incubation experiments that involved the mixing of two contrasting soils (A: calcareous sandy soil; B: acidic clayey soil) and biosolids in 4-NP were performed to examine the effect of 4-NP on the rate of production of CO2, the mineralization of N and the microbial biomass, by considering the biodegradation of 4-NP for the evaluation of soil health. The experimental results indicated that the half-life (t1/2) of 4-NP increased with the supplementary concentration of 4-NP (80, 160 and 240 mg kg(-1)) in the two soils, and the t1/2 values in the soil A are always lower than that in soil B. The 4-NP supplement in the biosolids reverses C mineralization in soil B more than it does in soil A, but it reverses N mineralization in soil A more than in soil B. The aeration status and microbial population of the biosolids treated soils are key factors in determining the time course of 4-NP degradation associated with the microbial activities. The 4-NP was biodegraded mainly by bacteria, and the effect on C and N mineralization of 4-NP input is determined by a balance of the reductions in microbial biomass C (MBC) and N (MBN). After destruction in microbial cell membrane and protein structures by the 4-NP, C and N mineralization, MBC and MBN were subsequently followed by a final decline phase for the later period of incubation.  相似文献   

14.
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.  相似文献   

15.
Phosphorus (P) in wastes from piggeries may contribute to the eutrophication of waterways if not disposed of appropriately. Phosphorus leaching, from three soils with different P sorption characteristics (two with low P retention and one with moderate P retention) when treated with piggery effluent (with or without struvite), was investigated using batch and leaching experiments. The leaching of P retained in soil from the application of struvite effluent was determined. In addition, P leaching from lime residues (resulting from the treatment of piggery effluent with lime to remove P) was determined in comparison to superphosphate when applied to the same three soils. Most P was leached from sandy soils with low P retention when effluent with or without struvite was applied. More than 100% of the filterable P applied in struvite effluent was leached in sandy soils with low P retention. Solid, inorganic forms of P (struvite) became soluble and potentially leachable at pH<7 or were sorbed after dissolution if there were sufficient sorption sites. In sandy soils with low P retention, more than 39% of the total filterable P applied in recycled effluent (without struvite) was leached. Soil P increased mainly in surface layers after treatment with effluent. Sandy soils pre-treated with struvite effluent leached 40% of the P retained in the previous application. Phosphorus decreased in surface layers and increased at depth in the soil with moderate P retention after leaching the struvite effluent pre-treated soil with water. The soils capacity to adsorb P and the soil pH were the major soil properties that affected the rate and amount of P leaching, whereas the important characteristics of the effluent were pH, P concentration and the forms of P in the effluent. Phosphorus losses from soils amended with hydrated lime and lime kiln dust residues were much lower than losses from soils amended with superphosphate. Up to 92% of the P applied as superphosphate was leached from sandy soils with low P retention, whereas only up to 60% of the P applied in lime residues was leached. The P source contributing least to P leaching was the lime kiln dust residue. The amount of P leached depended on the water-soluble P content, neutralising value and application rate of the P source, and the pH and P sorption capacity of the soil.  相似文献   

16.
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), is widely used to control pre- and post-emergence of grass and broad-leaved weeds in cereal crops. Its degradation in soils is a key process for assessing its leaching risk to groundwater resources. The degradation properties of various samples from surface and subsurface soil (down to 1m depth) of a heterogeneous agricultural field were studied using (14)C-IPU. Laboratory incubations were carried out at 22 and 10 degrees C and at water contents 90% and 50% of the estimated water holding capacity (eWHC) corresponding to water potentials between -56 kPa and -660 MPa. Degradation was found to be more sensitive to water content variations than to temperature variations in the ranges that we used. For surface layers, at 10 and 22 degrees C, the degradation half-life increased by a factor 10 and 15, respectively, when water content decreased from 90% to 50% eWHC. Under optimal degradation conditions (i.e. 22 degrees C and 90% eWHC), 3-(4-isopropylphenyl)-1-methylurea (MDIPU) was the main metabolite in surface samples. At subsurface depths, IPU half-lives were larger than 100 d, IPU was the main compound after 92 d of incubation and the main metabolite was an unidentified polar metabolite. These results suggest a metabolic pathway involving hydroxylations for subsurface materials. IPU degradation was largely affected by water availability in both surface and subsurface horizons. Clay content seemed to play a major role in degradation processes in subsurface soil by determining through sorption IPU availability in soil solution and/or by limiting water availability for microorganisms.  相似文献   

17.
Volcanic soils affected by different numbers of polluted river flooding events were investigated. Chromium and Cu were the major soil contaminants. Nickel, Fe, Zn and Mn total content never exceeded the Italian mandatory limits. The distribution of Cr and Cu total contents among studied soils indicated that only Cr contamination was related to overflowing events. In polluted soils, sequential chemical extractions revealed a preferential association of Cr and Cu with organic forms. A progressive Cr insolubilization with ageing was observed. Significant amounts of Cr and Cu were extracted by NH(4)-oxalate, suggesting metals association with short-range-order aluminosilicates and organo-mineral complexes. Possible methodological drawbacks in the use of the EU-BCR chemical speciation protocol on volcanic soils are discussed. Micromorphology and SEM/WDS analyses revealed Cr and Cu enriched silt and clay coatings in surface and subsurface soil horizons, suggesting a transfer of metal-rich sediments along the soil pore network with water movement.  相似文献   

18.
Chlorpyrifos degradation in Turkish soil   总被引:12,自引:0,他引:12  
Degradation of chlorpyrifos was evaluated in laboratory studies. Surface (0-15 cm) and subsurface (40-60 cm) clay loam soils from a pesticide-untreated field were incubated in biometer flasks for 97 days at 25 degrees C. The treatment was 2 micrograms g-1 [2,6-pyridinyl-14C] chlorpyrifos, with 74 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil subsamples were also methanol-extracted [ambient shaking, then supercritical fluid extraction (SFE)], then analyzed by thin-layer chromatography. Total 14C and unextractable soil-bound 14C residues were determined by combustion. From the surface and subsurface soils, 41 and 43% of the applied radiocarbon was evolved as 14CO2 during 3 months incubation. The time required for 50% loss of the parent insecticide in surface and subsurface soils was about 10 days. By 97 days, chlorpyrifos residues and their relative concentration (in surface/subsurface) as % of applied 14C were: 14CO2 (40.6/42.6), chlorpyrifos (13.1/12.4), soil-bound residues (11.7/11.4), and 3,5,6-trichloropyridinol (TCP) (3.8/4.8). Chlorpyrifos was largely extracted by simple shaking with methanol, whereas TCP was mainly removed only by SFE. The short persistence of chlorpyrifos probably relates to the high soil pH (7.9-8.1).  相似文献   

19.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号