首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
土壤中的PAHs对人体健康具有潜在的危害 .在天津采样数据的基础上 ,应用多元地统计学中的因子克立格方法 ,探讨了天津地区表层土壤中PAHs含量和一些土壤性质之间的空间相关性 .在天津地区共采集 188个表层土壤样品 ,测定了 16种PAHs的总含量、土壤 pH值、总有机碳含量和土壤粘粒含量 .研究结果表明 ,天津地区表层土壤中PAHs含量和pH、TOC、粘粒含量之间的空间相关性在不同尺度上有很大差异 .  相似文献   

2.
低山丘陵区焦化厂土壤中PAHs空间分布特征   总被引:1,自引:0,他引:1  
为了解低山丘陵区焦化厂多环芳烃类污染物空间分布特征,对山西省低山丘陵区某106667m2焦化厂土壤中的16种多环芳烃浓度进行分析,分别从平面和垂向研究污染物迁移扩散规律,结果表明:首先,表层土壤的16种多环芳烃多分布于化产车间,在表层0~0.5m深度范围内土壤中污染物ΣPAHs浓度由高到低顺序为蒸氨洗苯区(991.33mg/kg) > 冷鼓脱硫区(406.50mg/kg) > 污水处理区(97.69mg/kg);为说明PAHs来源,用高低环比例法进行多环芳烃单体分类计算统计,结果显示该场地的PAHs以M202,M228和M252的组合占优势,但M178仍占一定比例,因此污染源并非单一源,而是以油料燃烧释放的生成物即焦油的跑冒滴漏为主的石油源和燃烧源的混合源;其次,PAHs在不同车间的垂向分布存在差异.其中冷鼓脱硫区污染主要集中于3.0~4.0m,蒸氨洗苯区PAHs集中于地表0~0.5m,污水处理区PAHs集中于地表及深度1.0~2.0m处,这与污染区原工程工艺以及地层结构特点密切相关.  相似文献   

3.
鱼体内PAHs生物标志物研究综述   总被引:1,自引:0,他引:1  
梁艳 《上海环境科学》2010,29(4):157-160
多环芳烃进入水环境后,由于其较高的辛醇-水分配系数,在水中溶解的很少.主要在水底沉积物积累,而后又缓慢持续地向水体中释放,造成对水生生态环境低浓度、长时间的污染。鱼是水环境健康的重要指示生物,且鱼能快速降解多环芳烃,常作为评价水环境多环芳烃污染的重要指示生物。简单介绍了多环芳烃在鱼体内的代谢过程;从防御型生物标志物、损伤型生物标志物等方面,综述了几种鱼体内常用的多环芳烃生物标志物及其应用前景。  相似文献   

4.
天津滨海工业区土壤中多环芳烃的污染特征及来源分析   总被引:15,自引:0,他引:15  
采集天津滨海工业区38个表层土壤样品,利用GC/MS分析技术,研究了土壤中16种优控多环芳烃的含量和组分特征,运用主成分因子载荷方法分析了其污染来源,并初步评价了其风险水平.结果表明,该区域内94.7%土壤已被污染,其中重污染土壤占39.5%,最高污染样点PAHs含量高达5991.7 ng·g-1,平均含量为1148.1 ng·g-1,且城区土壤残留水平明显高于乡村土壤;PAHs的组分特征为以毒性水平较高的高环化合物为主;其污染来源主要是煤、天然气和汽油燃烧组成的混合源.  相似文献   

5.
天津地区表层土壤多环芳烃的多元统计分析   总被引:2,自引:2,他引:2  
文章应用多种多元统计分析方法,分析了天津表土16种PAHs之间的关系。分析结果显示,多元统计分析比单变量分析,有着无可比拟的优越性,能提取出许多单变量分析无法表达的重要信息。  相似文献   

6.
应用地统计学技术对全天津地区表层土壤中 16种优控多环芳烃含量和土壤理化参数进行了空间结构分析 .结果显示 ,各组分浓度均存在中尺度的空间自相关性 .多环芳烃浓度的空间结构存在明显的各向异性 .大气运移和土壤TOC含量可能是影响土壤多环芳烃浓度空间结构特征的重要环境因素 .  相似文献   

7.
慈溪市农田表层、亚表层土壤中多环芳烃(PAHs)的分布特征   总被引:7,自引:0,他引:7  
为了解多环芳烃在土壤中的迁移,研究了慈溪市农田表层土壤(耕层)和亚表层(犁底层)土壤中15种PAHs的含量及分布特征.表层土壤中PAHs的总量在70.4~325.1μg·kg-1之间;含量较高的几种化合物为萘(Nap)、菲(Phe)、荧葸(na)、芘(pyr)和苊(her)等,但主要以4环以上芳烃为主;Fla/(Fla Pyr)与IcP/(IeP BgP)比值分析表明,表层土壤中的PAHs主要来源于草、木、煤等的燃烧和汽车尾气排放.亚表层土壤中,PAHs总量为29.5~232.3μg·kg-1,以2环加3环化合物为主,单体PAH含量与表层土壤中含量的比值与其辛醇-水分配系数(10gKow)显著相关(r=0.923,P<0.0001),说明亚表层土壤中PAH主要来源于表层土壤的淋溶,根据化合物的logKow值可预测其在土壤中的迁移情况.亚表层土壤中PAHs的含量与有机质的含量极显著相关(r=0.945,P<0.0001),但表层中二者则无显著相关性(p=0.0887),表明耕作措施可能会对PAH在表层土壤中的分布产生影响.  相似文献   

8.
太湖表层沉积物中PAHs的空间分布及风险评价   总被引:3,自引:0,他引:3  
采用GC-MS方法测定了太湖湖区20个典型采样点表层沉积物中的多环芳烃(PAHs)含量,共检出13种PAHs,其浓度〔w(PAHs)〕范围为4223~2 0011 μgkg. 其中,属于我国优先控制的污染物有5种,属于US EPA(美国国家环境保护局)优先控制的污染物有11种,w(PAHs)为2775~1 7568 μgkg,最高浓度出现在太湖梅梁湾区域,PAHs在湖区总体的空间分布趋势呈梅梁湾>南部区>东部区>湖心区. 风险评价结果表明,针对检测出的11种US EPA优先控制的PAHs,除了某些采样点的芴(Flu)浓度处于中度潜在风险水平外,其余10种PAHs尚未对水环境造成明显危害风险影响. 利用特征化合物指数法对PAHs进行源分析发现,其主要来源是燃料燃烧.   相似文献   

9.
天津表土PAHs区域环境风险评价研究   总被引:1,自引:0,他引:1  
刘瑞民  王学军  张巍 《环境科学》2008,29(6):1719-1723
在参照国外相关标准基础上,应用指示克立格方法对天津地区表层土壤PAHs进行区域环境风险评价,并对评价结果进行比分析.结果表明,按照美国风险评价标准,只有组分Bap的含量超标,风险区域仅为8.12%和2.34%;按照荷兰风险评价标准,除了Ant和Baa的风险区域所占天津地区总面积的比重比较小之外(分别为5.26%和68.42%),其余所占比重都非常大,全部超过90%以上;按照加拿大风险评价标准,除了Nap的风险区域所占比重比较大(为97.89%)、Phe和Pyr所占比重中等(分别为56.84%和47.65%)之外,其余参与风险评价组分的风险区域所占比重都比较小,全部都在5%以下;按照丹麦(西兰岛)风险评价标准,只有组分Nap超标,且风险区域仅为9.26%.通过不同国家评价标准结果的比较,能充分了解天津地区目前土壤PAHs风险特征,对于制定符合天津地区特征以及符合中国特征的土壤PAHs风险评价标准具有重要的意义.  相似文献   

10.
黄河全流域岸边表层土壤中PAHs的分布、来源及风险评估   总被引:1,自引:0,他引:1  
为研究黄河流域表层土壤的多环芳烃(PAHs)污染水平,于2015年5月期间采集了39个黄河全流域岸边表层土壤样品.研究了土壤中∑25PAHs和∑7carc PAHs的空间分布特征,利用同分异构体比值法和主成分分析法对其进行来源解析,并采用BaP毒性当量和超额终生癌症风险增量模型(ELCR)对多环芳烃进行风险评估.结果表明,黄河流域表层土壤样品中∑25PAHs浓度范围为18.23~6805.49ng/g,均值为343.764ng/g;∑7care PAHs含量为2.23~2796.34ng/g,均值为126.6ng/g.PAHs含量整体趋势为中上游高于下游,多数土壤样品中Ant/(Ant+Phe)<0.1,0.2-6~10-4之间,处于潜在风险水平.享堂ELCR值为10-3,呈现较高健康风险水平.  相似文献   

11.
根据生产工序的不同将焦化场地划分为堆煤区、炼焦区、化产区,共采集40组土壤样品,分析各类污染源作用下场地PAHs污染程度、分布、影响途径及组成特征等.结果表明,场地处于严重污染水平且BaP是健康风险首要关注污染物.按ΣPAHs含量中位数排序,化产区(1733.87mg/kg)>炼焦区(32.86mg/kg)>堆煤区(21.21mg/kg).对应污染途径依次为化工副产品的泄漏及填埋、烟粉尘大气沉降、煤粉(渣)降雨淋滤.异构体比值法判定的污染源不能明显区分各工序的土壤污染特点且存在偏差,利用ω(低环PAHs)/ω(高环PAHs)比值法进行排序,化产区深层(7.39)>化产区表层(1.33)>堆煤区(1.06)>炼焦区(0.39),PAHs组成特征受污染源自身特性及外环境作用共同所致.4~5环PAHs是该焦化场地的特征污染物,化产区、堆煤区土壤中Nap、Phe占ΣPAHs比重较高,而炼焦区以BbF、Fla、Chry为主要组分.  相似文献   

12.
根据生产工序的不同将焦化场地划分为堆煤区、炼焦区、化产区,共采集40组土壤样品,分析各类污染源作用下场地PAHs污染程度、分布、影响途径及组成特征等.结果表明,场地处于严重污染水平且BaP是健康风险首要关注污染物.按ΣPAHs含量中位数排序,化产区(1733.87mg/kg)>炼焦区(32.86mg/kg)>堆煤区(21.21mg/kg).对应污染途径依次为化工副产品的泄漏及填埋、烟粉尘大气沉降、煤粉(渣)降雨淋滤.异构体比值法判定的污染源不能明显区分各工序的土壤污染特点且存在偏差,利用ω(低环PAHs)/ω(高环PAHs)比值法进行排序,化产区深层(7.39)>化产区表层(1.33)>堆煤区(1.06)>炼焦区(0.39),PAHs组成特征受污染源自身特性及外环境作用共同所致.4~5环PAHs是该焦化场地的特征污染物,化产区、堆煤区土壤中Nap、Phe占ΣPAHs比重较高,而炼焦区以BbF、Fla、Chry为主要组分.  相似文献   

13.
2007年4月~2008年10月,在强降雨条件下,定点采集天津市郊土-水界面污染流样品64个,运用高效液相色谱仪对16种多环芳烃(PAHs)进行分析测定.结果显示,研究区土-水界面污染流中16种PAHs含量范围在145.6~7495.1μg·L-1,平均含量1220.5μg·L-1,以3、4和5环PAHs为主,分别占PAHs总量的36.5%、26.3%和27.9%.分别利用主成分分析法、比值法和典型源三角图判别法对研究区土-水界面污染流中PAHs的可能来源进行了解析,结果表明,PAHs主要来自于煤炭、化石燃料以及生物质等的燃烧过程,且研究区各监测样点PAHs不是来自于同一个污染源,而是多种污染源共同复合累加的结果.  相似文献   

14.
官厅水库周边蔬菜地表土中多环芳烃的污染   总被引:5,自引:1,他引:5  
为掌握北京市备用水源地——官厅水库周边的蔬菜地表土中多环芳烃(PAHs)的污染状况及来源,于2008年11月在延庆县小丰营蔬菜产地采集了48个表土样品(0~20cm)测定PAHs含量,并综合特征化合物比值法和因子分析/多元线性回归两种方法推断了土壤中PAHs来源.结果表明,土壤中15种PAHs单体(PAH15)的含量均服从正态分布或对数正态分布,∑15PAH几何均值为(118.71±28.63)ng.g-1(干重含量,下同),算术均值为(139.57±85.65)ng.g-1.以荷兰土壤标准衡量,71%的样点归类PAHs弱污染,与文献报道的大多数国内外农业土壤相比,尚属于较清洁的水平.成分谱分析表明,研究区域土壤中的PAHs分布谱以3环~4环化合物为主,优势化合物为PHE、FLA、FLO、PYR.校正后的FLA/(FLA+PYR),ANT/(ANT+PHE)比值表明该研究区域PAHs主要来自燃烧源.通过因子分析提取了3个主成分,分别代表①燃煤和交通燃油;②生物质燃烧和炼焦;③燃油.多元线性回归分析的结果表明,这3种来源对官厅水库周边蔬菜地表土中PAHs的贡献分别是54.0%,39.9%和6.1%.结合两种源解析方法和排放源分析,除该区域存在明显生物质燃烧源以外,其它来源的PAHs经过了一定距离的大气迁移和沉降.  相似文献   

15.
随着城市化和工业化进程加速,城市土壤多环芳烃(PAHs)含量及污染状况受到广泛关注.以石嘴山市为例,分析8个城市功能区156个表层土壤(0~20 cm)样品PAHs含量的空间分布特征,运用单因子指数、内梅罗综合指数和终生癌症风险增量模型评价土壤PAHs污染状况,利用正定矩阵因子分解模型(PMF)对PAHs来源进行解析.结果表明,石嘴山市表层土壤PAHs总含量均值为489.82 ng·g-1,除芘(Pyr)外的15种PAH单体变异系数均大于100%,属强变异;不同功能区土壤PAHs含量呈现出:交通区(1 217.61 ng·g-1)>工业区(809.58 ng·g-1)>公园(273.66 ng·g-1)>文教区(268.18 ng·g-1)>商业区(240.05 ng·g-1)>农业区(226.81 ng·g-1)>医疗区(211.90 ng·g-1)>居民区(183.4...  相似文献   

16.
通过对安徽省中北部6条河流沉积物样品的粒径、矿物组分和有机质含量的测试,并应用气相色谱质谱联用仪测定了样品中萘、二氢苊、苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、、苯并[a]芘和二苯并[a,h]蒽等12种多环芳烃的含量,分析了研究区河流沉积物的特征和多环芳烃分布。研究结果表明:位于安徽省中北部的淮河南北岸支流沉积物粒径和矿物组分具有不同特征;就PAHs总量来看,北岸支流平均值为313.3ng/g,南岸支流平均为112.8ng/g,差异比较明显,南岸支流沉积物中大多数多环芳烃的平均含量都低于北岸支流(蒽和菲除外,二苯并[a,h]蒽未检出);而有机质的含量,南北岸支流总体无明显差异(含量在0.55%至1.83%之间),但单条河流的分布呈沿水流方向自中上游至下游逐渐降低。  相似文献   

17.
沉积物中多环芳烃和有机氯农药赋存状态   总被引:17,自引:3,他引:17       下载免费PDF全文
对珠江广州河段高污染沉积物进行粒度分级,对不同粒径的样品重液分离,收集轻组分(有机质)和重组分(主要为无机矿物及无定型有机质).用显微镜对沉积物中不同粒径轻重组分的吸附剂进行鉴定,测定其中的多环芳烃(PAHs)和有机氯农药(OCPs).结果表明,沉积物样品中有机质占总重量9.1%,富集了81.5%的多环芳烃,77.2%的有机氯农药;无机矿物和无定型有机质占90.9%,富集了18.5%的多环芳烃,22.8%的有机氯农药;轻组分中的有机吸附剂对PAHs和OCPs的富集能力比重组分无机矿物和无定型有机质高1~2个数量级.  相似文献   

18.
研究了长江攀枝花、宜宾、泸州、重庆、涪陵、三峡、岳阳、武汉、九江和南京共计10个重点江段枯水期和丰水期表层水中19种多环芳烃(PAHs)及其15种衍生物(SPAHs)的分布和来源,评估了长江PAHs类污染的健康风险及时空差异.结果表明,长江表层水中∑PAHs、∑SPAHs平均浓度分别为(147.3±59.8)、(73.2±29.7) ng·L-1,检出率分别为82.9%、69.5%,其中2~3环(S)PAHs所占比例为79%.在SPAHs中,∑NPAHs(硝基取代PAHs)、∑MPAHs(甲基取代PAHs)、∑OPAHs(氧化PAHs)的平均浓度分别为(27.0±4.5)、(24.7±15.5)、(17.1±11.9) ng·L-1.根据分子比值法及主成分分析可知,长江重点江段PAHs主要来源于生物质、化石及液体燃料燃烧,SPAHs主要来源于燃烧源和光化学转化,SPAHs及PAHs通过大气沉降汇入水体.采用毒性当量因子浓度计算对长江重点江段PAHs进行健康风险评估,结果表明在枯水期具有致癌性PAHs的∑TEQBaP值(苯并芘毒性当量)较高,其中岳阳、武汉江段的BaP毒性当量浓度高于我国地表水规定阈值,应当高度重视长江流域PAHs在枯水期引起的健康风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号