首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Butyltin concentrations were determined in sediments, tissues and stomach contents of fish collected in 41 embayments on the East, Gulf and Pacific coasts of the U.S.A. between 1986 and 1991 as part of the National Oceanic and Atmospheric Administration's (NOAA) National Benthic Surveillance Project (NBSP). A total of 99 sediments, 108 fish liver samples from 11 fish species, and 10 composites of fish stomach contents were analyzed for tetrabutylin, tributylin, dibutylin and monobutylin. Tributyltin (TBT) was detected (i.e. > 10 ng/g) in 38 of the sediments samples analyzed and was generally the predominant bulytin present; concentrations of total butyltins ranged from 15 to 1600 ng/g wet weight. The highest concentrations were found in sediments from urban sites, especially sites on the West coast. Many of the fish liver and stomach contents samples also contained butyltins. Tributyltin represented 83 (7.1)% [mean (SEM); n=15], 64 (6.6)% (n=12) and 36 (7.8)% (n=12) of the total butyltins in livers from white croaker, winter flounder and Atlantic croaker, respectively, suggesting possible species differences in biotransformation of TBT. The concentrations of butyltins in stomach contents indicated that diet can be a significant route of exposure of fish to butyltins. Between 1986 and 1991 butyltin concentrations in sediments and fish generally appeared to be declining; however, no statistically significant temporal trends were observed at individual sites or for the sites overall.The U.S. government's right to retain a non-exclusive, royalty free license in and to any copyright is acknowledged.  相似文献   

2.
Ohio is typical among the Midwestern and Eastern United States with high levels of water pollutants, the main sources being from agriculture. In this study, we used a digital elevation model in conjunction with hydrological indices to determine the role of landscape complexity affecting the spatial and temporal variation in pollutant levels, in one of the most impaired headwater streams in Ohio. More than eighty five percent of the study area is dominated by agriculture. Spatial distribution of slope (S), altitude and wetness index along with other watershed parameters such as flow direction, flow accumulation, stream networks, flow stream orders and erosion index were used within a Geographic Information Systems framework to quantify variation in nitrate and phosphate loads to headwater streams. Stream monitoring data for nutrient loads were used to correlate the observed spatial and temporal patterns with hydrological parameters using multiple linear regressions. Results from the wetness index calculated from a digital elevation model suggested a range of 0.10–16.39, with more than 35% having values less than 4.0. A Revised Universal Soil Loss Equation (RUSLE) predicted soil loss in the range of 0.01–4.0 t/ha/yr. Nitrate nitrogen levels in the study area paralleled precipitation patterns over time, with higher nitrate levels corresponding to high precipitation. Atmospheric deposition through precipitation could explain approximately 35% of total nitrate levels observed in streams. Among the different topographic variables and hydrological indices, results from the step-wise multiple regression suggested the following best predictors, (1) elevation range and upstream flow length for nitrate, (2) flow direction and upstream flow length for ammonia-nitrogen and slope, and (3) elevation range for phosphate levels. Differences in the landscape models observed for nitrate, phosphate and ammonia-nitrogen in the surface waters were attributed partly to differences in the chemical activity and source strengths of the different forms of these nutrients through agricultural management practices. The results identify geomorphologic and landscape characteristics that influence pollutant levels in the study area.  相似文献   

3.
The U.S. Environmental Protection Agency (EPA), National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) have formed a partnership to establish pilot sites for the development of a network known as the Coastal Intensive Site Network (CISNet). CISNet is composed of intensive, long-term monitoring and research sites around the U.S. marine and Great Lakes coasts. In this partnership, EPA and NOAA are funding research and monitoring programs at pilot sites that utilize ecological indicators and investigate the ecological effects of environmental stressors. NASA is funding research aimed at developing a remote sensing capability that will augment or enhance in situresearch and monitoring programs selected by EPA and NOAA. CISNet has three objectives: 1) to develop a sound scientific basis for understanding ecological responses to anthropogenic stresses in coastal environments, including the interaction of exposure, environment/climate, and biological/ecological factors in the response, and the spatial and temporal nature of these interactions, 2) to demonstrate the value of developing data from selected sites intensively monitored to examine the relationships between changes in environmental stressors, including anthropogenic and natural stresses, and ecological response, and 3) to provide intensively monitored sites for development and evaluation of indicators of change in coastal systems.  相似文献   

4.
High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.  相似文献   

5.
Atmospheric deposition may be an important source of persistent organic compounds (POP) and pesticides for the Dutch coastal and inland waters. Current estimates of the atmospheric input have been made using atmospheric dispersion models. The uncertainty is however large. A project was defined with the aim to assess the input on the basis of measurements. For a period of two years (1999-2001) a monitoring network was operated. At eighteen stations, located across the whole country, air and precipitation samples were taken on a weekly and monthly basis. In these samples the concentrations of pesticides, PCB's and PAH's were determined. Up to 50 different pesticides were observed in precipitation and air. The concentration of 17 of these in precipitation exceeded the maximum permissible level for surface water and 22 exceeded the standard for drinking water of 100 ng l(-1). The input from the atmosphere to Dutch inland waters appeared to be as large as the input of pesticides by other sources such as spray drift. Model calculations were also carried out to identify the sources of these compounds. The occurrence of atrazine could be related to emissions outside the Netherlands.  相似文献   

6.
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha–1 a–1 for N and 15 kg ha–1 a–1 for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha–1 a–1 for N and lower than 3 kg ha–1 a–1 for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.  相似文献   

7.
Atmospheric acidification in the Asian region is discussed from the perspectives of currently available regional measurements, and the knowledge now available from several decades of acidic deposition research in the northern mid-latitudes. The main conclusions emerge: (1) that there is insufficient information currently available to enable a quantitative assessment of the present state or future potential for atmospheric acidification across the whole region; and (2) that within the limitations imposed by (1) the possibility of future acidification in certain areas cannot be ruled out if economic development and energy use on a per capita basis evolve to the levels of the major industrial countries. These two conclusions point to the need for systematic, multidisciplinary studies covering the whole region. The studies should assess quantitatively the current levels of acidic and alkaline emissions (both natural and anthropogenic) to the atmosphere, identify the relevant chemical transformations and transport/deposition pathways in the regional atmosphere, and assess the susceptibility of regional plants, soils and groundwaters to acidification.Plenary speaker.  相似文献   

8.
The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999–2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ±2 ng·l−1 and ±2 μg·m−2·year−1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively.  相似文献   

9.
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.  相似文献   

10.
The chemical composition of bulk precipitation and throughfall were analyzed, during a 1-year period (2002), in rural-urban-industry gradients with similar forest cover (Eucalyptus spp.) in southern Brazil (Rio Grande and Porto Alegre cities). Values of pH varied from 5.0-5.1 in rural to 5.4-6.1 in industrial sites, and were intermediate in urban sites. The major ions in bulk precipitation were Na(+), Cl(-), [Formula: see text], [Formula: see text] and [Formula: see text], and concentrations increased in urban and industrial sites. Principal component analysis identified the local main anthropogenic sources. Estimated annual amounts of dry deposition were generally greater in both industrial and urban sites than in rural sites. Areas close to industrial activity showed greater S and N total deposition (10.4-10.9 and 20.2-30.6 kg/ha, respectively) than in urban (3.4-7.3 and 14.6-24.1 kg/ha) and in rural (1.7-2.6 and 8.9-12.1 kg/ha) sites. Annual deposition of Ca and P varied from 0.6 and 3.0 kg/ha in rural to 45.4 and 32.4 kg/ha in industrial sites, maximum values being observed closed to the phosphate fertilizer plant of Rio Grande. Deposition in urban and industrial sites may be balanced by the alkaline cations, as bulk precipitation pH varied from 5.4 to 6.1, and was greater than in rural sites (5.0-5.1).  相似文献   

11.
The U.S. Environmental Protection Agency (EPA) is working with federal, state, local, and non-governmental partners to produce an interactive, spatial inventory of environmental data in the mid-Atlantic region. The inventory will include maps of sampling locations, lists of measurements, and design information for hundreds of research sites and monitoring programs. It will also feature user-defined queries, resulting in customized maps that satisfy search criteria. (For example, "Display the probability-based surveys that measure dry deposition and nutrient availability in soils"). The inventory will be used in an interagency pilot study, instigated by the National Science and Technology Council's Committee on the Environment and Natural Resources, to integrate environmental monitoring and research activities. The inventory will also provide information for a regional ecological assessment led by EPA Region 3 and the Office of Research and Development. In addition, an interagency consortium will use the inventory to identify suitable field data for assessing the accuracy of satellite imagery. In each of these three applications, the inventory will be tested and evaluated as a potential prototype for completing additional regions of the U.S. Maintained as an Oracle database, the inventory is accessible on the internet at http://www.epa.gov/monitor/. Currently, ten inventory records are on-line for demonstration. The complete federal inventory of approximately 180 records will be accessible on-line by October, 1997; approximately 200 state, local and non-governmental records are scheduled for on-line access by April, 1998.  相似文献   

12.
运用主成分分析法(PCA)初步判断2010年11月—2011年10月覆盖上海市18个行政区20个采样点大气降水中类二噁英多氯联苯(DL-PCBs)的来源。结果表明,研究期间上海市大气降水中DL-PCBs成分以五氯代PCBs为主。PC1判断可能为含DL-PCBs成分的日本PCBs产品KC500,PC2判断可能为含DL-PCBs成分的日本KC600及美国Aroclor1260产品,PC3可能为国产PCBs产品。由此判断,上海市大气降水中DL-PCBs受多种来源共同影响。前两大主要来源可能为来自环境中美国Aroclor1260和日本KC500、KC600产品的历史使用残留,第三大来源才可能是我国国产PCBs产品在大气环境中的残留。  相似文献   

13.
The nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North–South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.3 to 29.5 kg N ha?1 a?1, increasing from north to south along NSTEC. The relatively high average ratio of ammonium to nitrate in deposition (1.83) indicated that the N deposition along the NSTEC in China mostly originated in farming and animal husbandry rather than in industry and vehicle activities. For seasonal variability, the DIN deposition showed a single peak in the growing season in the northern part of NSTEC, while, in the southern part, it exhibited double-peaks in the early spring and the mid-summer, respectively. On the annual scale, the DIN deposition variations of the eight sites could be mainly explained by precipitation and the distances from forest stations to provincial capital cities.  相似文献   

14.
The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.  相似文献   

15.
Research on precipitation carried out systematically at the University station at Jeziory in the Wielkopolski National Park (western Poland) allowed the determination of pollutants deposited with precipitation in this forest ecosystem. During 13 years of study, the pH of precipitation was found to persist at a low level (4.33 on average), which resulted a substantial deposition of H+. Values of acidifying and basic ions deposited in this area were determined and compared with the respective figures obtained at selected EMEP stations studying background pollution, the means for Poland, and areas subjected to considerable human impact. The use of the critical load function made it possible to establish that the S and N deposition for 2002–2005 were below its line.  相似文献   

16.
Results from two 'Mussel Watch'-type monitoring programs were compared: the Réseau National d'Observation de la qualité du milieu marin (RNO), the French monitoring network, and the Mussel Watch Project of the U.S. National Status and Trends (NS&T) Program. 80 RNO sites (47 for mussels and 33 for oysters) and 89 NS&T sites (45 for mussels and 44 for oysters) provided a basis for the comparison of median concentrations of commonly measured trace metals (mercury, lead, zinc, cadmium and copper) and organic chemicals. Lower lead and lindane concentrations in the U.S. were explained by their respective history of use. Differences in Zn and Cu, essential elements for both mussels and oysters, could be due to specific internal regulation processes. Higher cadmium concentrations in the U.S. are possibly related to U.S. coastal areas being richer in nutrients or to a lesser use of this element as a general anticorrosive in France. We could not find any plausible explanation for higher mercury concentrations in France. This first attempt of a comparison of national chemical monitoring programs raises the need for deeper understanding of possible contamination sources.  相似文献   

17.
National networks detect multi-state trends in element deposition using direct measurement methods. Biomonitoring techniques have been used to examine deposition in local areas and around point sources. We sought to determine the efficacy of a moss bag technique to detect element deposition trends on a mid-range (state) scale, and to compare these results with those of the National Acid Deposition Program/National Trends Network (NADP/NTN, 1999). We sampled heavy metals, sulfur, and nitrogen deposition (21 elements) using mesh bags containing Sphagnum russowii at nine sites, over a 375 km transect crossing southern Wisconsin (upper Midwest, USA). We found statistically significant trends of decreasing deposition in a northwesterly direction for 13 elements: Al, B, Ca, Cd, Co, Cu, Cr, Fe, Mg, Mn, Ni, S, and Zn. Six of these have moderate to large changes in concentration (14–37%). The trends for Ca, Mg, and S are consistent with regional deposition patterns in 1998 isopleth maps from the NADP/NTN (1999) which are derived from a sampling array far less dense than the transect sites. This national network indicates that Ca and Mg increase to the southeast, beyond Wisconsin borders. The fact that the present study demonstrates strong correlations between both of these elements (Ca and Mg) and Al, B, Cr, Cu, Fe, Mn, Ni, and Zn (mean r for all correlations = 0.75, p < 0.02) implies that these correlated elements also increase to the southeast in neighboring states.  相似文献   

18.
Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, 'carp') or black bass (Micropterus spp., 'bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carp and bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984-1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8-4.7 microg g-(1) in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where levels of these metals were high in the past and increased from 1986 to 1995.  相似文献   

19.
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear Brook Watershed in Maine (BBWM) is a long-term paired whole-watershed experimental acidification study demonstrating evidence of each of these acidification characteristics in a northeastern U.S. forested ecosystem. In 2003, BBWM soils were studied using the Hedley fractionation procedure to better understand mechanisms of response in soil Al, Fe, and P chemistry. Soil P fractionation showed that recalcitrant P was the dominant fraction in these watersheds (49%), followed by Al and Fe associated P (24%), indicating that a majority of the soil P was biologically unavailable. Acidification induced mobilization of Al and Fe in these soils holds the potential for significant P mobilization. Forest type appears to exert important influences on metal and P dynamics. Soils supporting softwoods showed evidence of lower Al and Fe in the treated watershed, accompanied by lower soil P. Hardwood soils had higher P concentrations in surface soils as a result of increased biocycling in response to N additions in treatments. Accelerated P uptake and return in litterfall overshadowed acidification induced P mobilization and depletion mechanisms in hardwoods.  相似文献   

20.
Chemical mass balance model for source apportionment of aerosols in Bombay   总被引:1,自引:0,他引:1  
Aerosol samples collected within an industrial region of Bombay were analyzed for elemental concentrations using inductively coupled plasma emission spectroscopy, ultraviolet/visible spectrophotometry and X-ray fluorescence spectroscopy. Nineteen elements were selected as tracers of identified sources of aerosol in the region. The U.S. EPA chemical mass balance model was employed for source apportionment. Seven major source types were identified and the performance of the model was evaluated at different sampling locations. Model results were unsatisfactory at highly polluted sites in the study regions. It was found that U.S. EPA source profiles are not suitable for such regions in India and site-specific source profiles should be used in the application of chemical mass balance for source apportionment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号