首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to examine the effects of the anti-ozonant ethylenediurea (EDU) and chronic ozone (O3) exposure on leaf physiology and senescence in an O3-sensitive potato cultivar (Solanum tuberosum L. cv. Norland). A dose-response experiment showed that an EDU concentration of 15 mg l(-1) soil (given as a soil drench) provided complete protection from accelerated foliar senescence induced by exposure to 0.1 microl l(-1) O3 for 5 h day(-1) for 11 days. EDU doses of 45 and 75 mg active ingredient l(-1) soil also gave protection but were associated with symptoms of toxicity and delayed senescence. In further experiments, plants were given 0 or 15 mg EDU l(-1) soil and exposed to clean air or 0.1 microl l(-1) O3 for 5 h day(-1) for 14 days. Chronic O3 exposure in the absence of EDU resulted in accelerated foliar senescence, characterized by early declines in net photosynthesis and Rubisco quantity in O3-treated plants relative to controls. EDU in the presence of O3 gave complete protection against symptoms of accelerated senescence. Senescence was not delayed in plants that received EDU in the absence of O3, and no symptoms of EDU toxicity were evident. The results suggest that EDU-induced tolerance to O3 was not based on 'anti-senescent' properties of this anti-ozonant.  相似文献   

2.
The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O(3)) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O(3) concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O(3) concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 micromol m(-2) s(-1), respectively. Ambient O(3) exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001 growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O(3) exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g(wv)). The reductions in Pn were greater than reductions in g(wv), which resulted in greater O(3) uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O(3) uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O(3) exposure are likely complicated due to multiple factors under natural forest conditions.  相似文献   

3.
The goal of this study was to investigate the potential for atmospheric Hg degrees uptake by grassland species as a function of different air and soil Hg exposures, and to specifically test how increasing atmospheric CO(2) concentrations may influence foliar Hg concentrations. Four common tallgrass prairie species were germinated and grown for 7 months in environmentally controlled chambers using two different atmospheric elemental mercury (Hg major; 3.7+/-2.0 and 10.2+/-3.5 ng m(-3)), soil Hg (<0.01 and 0.15+/-0.08 micro g g(-1)), and atmospheric carbon dioxide (CO(2)) (390+/-18, 598+/-22 micro mol mol(-1)) exposures. Species used included two C4 grasses and two C3 forbs. Elevated CO(2) concentrations led to lower foliar Hg concentrations in plants exposed to low (i.e., ambient) air Hg degrees concentrations, but no CO(2) effect was apparent at higher air Hg degrees exposure. The observed CO(2) effect suggests that leaf Hg uptake might be controlled by leaf physiological processes such as stomatal conductance which is typically reduced under elevated CO(2). Foliar tissue exposed to elevated air Hg degrees concentrations had higher concentrations than those exposed to low air Hg degrees , but only when also exposed to elevated CO(2). The relationships for foliar Hg concentrations at different atmospheric CO(2) and Hg degrees exposures indicate that these species may have a limited capacity for Hg storage; at ambient CO(2) concentrations all Hg absorption sites in leaves may have been saturated while at elevated CO(2) when stomatal conductance was reduced saturation may have been reached only at higher concentrations of atmospheric Hg degrees . Foliar Hg concentrations were not correlated to soil Hg exposures, except for one of the four species (Rudbeckia hirta). Higher soil Hg concentrations resulted in high root Hg concentrations and considerably increased the percentage of total plant Hg allocated to roots. The large shifts in Hg allocation patterns-notably under soil conditions only slightly above natural background levels-indicate a potentially strong role of plants in belowground Hg transformation and cycling processes.  相似文献   

4.
Intermittent exposure of tomato plants (cv. Pusa Ruby) to SO(2) at 286 microg m(-3) (3 h every heavy third day for 75 days) induced slight chlorosis of leaves. At 571 microg m(-3), considerable chlorosis with browning developed on the foliage. These symptoms were more pronounced and appeared earlier on SO(2)-exposed plants infected with Meloidogyne incognita race 1 (Mi), especially in post- and concomitant-inoculation exposures. Mi and/or SO(2) significantly reduced different parameters of plant growth. Synergistic (positive) interactions between SO(2) and Mi occurred in concomitant- and post-inoculation exposures at 286 and 571 microg m(-3), respectively. In other treatments, an antagonistic (negative) interaction was observed. However, in a few cases, additive effects of SO(2) and Mi were also recorded. Intensity of root-knot (galling) was enhanced at both concentrations of SO(2), while reproduction (egg mass production) of Mi was enhanced in concomitant-inoculation exposures at 286 microg m(-3) and inhibited at 571 micro m(-3). Exposure to SO(2) and/or Mi decreased the number and size of stomata but increased the number and length of trichomes on both the leaf surfaces. Stomatal aperture was significantly wider in the plants exposed to 571 microg SO(2) m(-3) alone and in pre-, post-, and concomitant-inoculation exposures at 286 or 571 microg m(-3). Stomatal aperture was directly related to foliar injury and reductions in growth, yield, and leaf pigments.  相似文献   

5.
The relationship between pollutant-induced leaf drop or reductions in foliar pigment concentrations and yield was determined for field-grown alfalfa (Medicago sativa L. 'Moapa') exposed to simulated fogs of pH 7.24, 2.69 and 1.68 singly, and in combination with ambient ozone (O3) over an 11-week period. Highly acidic fog (pH 1.68) or ambient O3 significantly reduced totalseason dry yield and foliar pigment concentrations, and increased leaf drop. Significant interactive effects between acidic fog and O3 were observed for the leaf parameters, but not for yield. Thus, multiple exposures to acidic fog at current ambient levels of acidity (i.e. pH 2.69) could effect leaf quality in the absence of significant effects on yield. Alternatively, O3-induced effects on leaves may have utility as bioindicators of potential yield losses.  相似文献   

6.
Four Mediterranean tree taxa, Quercus ilex subsp. ilex, Quercus ilex subsp. ballota, Olea europaea cv. vulgaris and Ceratonia siliqua, were exposed to different ozone (O(3)) concentrations in open top chambers (OTCs) during 2 years. Three treatments were applied: charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air plus 40 ppb(v) of O(3) (NF +). The photochemical maximal efficiency, Fv/Fm, decreased in NF + plants during the second year of exposure, especially during the most stressful Mediterranean seasons (winter and summer). An increase of delta(13)C was found in three of the four studied species during the first year of exposure. This finding was only maintained in C. siliqua during the second year. Decreases in the chlorophyll content were detected during the first year of fumigations in all the species studied, but not during the second year. The NF + treatment induced changes in foliar anatomical characteristics, especially in leaf mass per area (LMA) and spongy parenchyma thickness, which increased in some species. A reduction in N content and an increase in delta(15)N were found in all species during the second year when exposed in the NF + OTCs, suggesting a change in their retranslocation pattern linked to an acceleration of leaf senescence, as also indicated by the above mentioned biochemical and anatomical foliar changes. The two Q. ilex subspecies were the most sensitive species since the changes in N concentration, delta(15)N, chlorophyll, leaf area, LMA and biomass occurred at ambient O(3) concentrations. However, C. siliqua was the most responsive species (29% biomass reduction) when exposed to the NF + treatment, followed by the two Q. ilex subspecies (14-20%) and O. europaea (no significant reduction). Ozone resistance of the latter species was linked to some plant traits such as chlorophyll concentrations, or spongy parenchyma thickness.  相似文献   

7.
The single and combined effects of ozone (O(3)) and Fusarium oxysporum on growth and disease expression of soybean genotypes differing in foliar sensitivity to O(3) were studied in the greenhouse. O(3) had no effect on root and hypocotyl rot severity of PI 153.283 (O(3)-sensitive, S) or PI 189.907 (O(3)-tolerant, T) maturity group I soybean lines. Plants of both genotypes infected with F. oxysporum and exposed to O(3) had greater reductions in relative growth rate (RGR), net assimilation rate (NAR), and had more stippled leaves per plant than Fusarium-free plants exposed to O(3). O(3) alone had a greater impact on shoot dry weight, RGR, and NAR of PI 153.283 (S) than of PI 189.907 (T). O(3) alone reduced shoot and root dry weights primarily through a depression in NAR and less through reduced leaf area. F. oxysporum alone reduced root dry weight at 35 days; however, infected plants responded with increases in root dry weight from 49 to 63 days. Similarly, F. oxysporum alone lowered early RGR but subsequent RGR decline was less rapid while NAR remained high, particularly during later sampling intervals. Infection by F. oxysporum that causes root and hypocotyl rot increased soybean sensitivity to O(3) by prolonging active vegetative growth.  相似文献   

8.
The effect of ozone (O3) on growth, yield and foliar antioxidants of spring wheat (Triticum aestivum L. cv. Turbo) was investigated in 1990 and 1991 in Braunschweig, Germany. Plants were grown full-season in pots in open-top chambers ventilated with charcoal-filtered (CF) air to which one or two levels of O3 were added. Mean 8 h day(-1) (10.00-18.00 h) O3 concentrations in the CF and CF + O3 treatments were 5.9, 61.2 and 92.5 nl litre(-1) in 1990, and 4.7 and 86.4 nl litre(-1) in 1991. Plants that received the high O3 level showed symptoms of premature senescence of the oldest leaves and yield reductions in both growing seasons. The contents of ascorbate and glutathione and the enzyme activities of ascorbate peroxidase and glutathione reductase were measured in symptomless flag leaves in weekly intervals before and after the beginning of anthesis. Leaf age had a significant effect on all antioxidants investigated. The O3 exposures of about 90 nl litre(-1) increased the activity of ascorbate peroxidase and the concentration of glutathione, but there were no pollutant effects on ascorbate content and glutathione reductase activity. Measurements of the antioxidant levels throughout one day showed no clear indications of diurnal changes in the antioxidative capacity in wheat flag leaves. The results are discussed in relation to the role of antioxidants in O3 detoxification.  相似文献   

9.
Purple coneflower plants (Echinacea purpurea) were placed into open-top chambers (OTCs) for 6 and 12 weeks in 2003 and 2004, respectively, and exposed to charcoal-filtered air (CF) or twice-ambient (2x) ozone (O3) in 2003, and to CF, 2x or non-filtered (NF), ambient air in 2004. Plants were treated with ethylenediurea (EDU) weekly as a foliar spray. Foliar symptoms were observed in >95% of the plants in 2x-treated OTCs in both years. Above-ground biomass was not affected by 2x treatments in 2003, but root and total-plant biomass decreased in 2004. As a result of higher concentrations of select cell wall constituents (% ADF, NDF and lignin) nutritive quality was lower for plants exposed to 2x-O3 in 2003 and 2004 (26% and 17%, respectively). Significant EDU x O3 interactions for concentrations of cell wall constituents in 2003 indicated that EDU ameliorated O3 effects on nutritive quality. Interactions observed in 2004 were inconsistent.  相似文献   

10.
Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.  相似文献   

11.
Five-month old hybrid poplar clones NE388 and NE359 were exposed to square-wave 30, 55, and 80 ppb O(3) (8 h/day, 7 day/week) under constant high light (HL) and light fleck (LF) during 28 May-29 June 1999, and exposed to 30 and 55 ppb O(3) under HL, LF, and constant low light (LL) during 22 May-28 June 2000 within Continuously Stirred Tank Reactors (CSTR) in a greenhouse. Ramets of these two hybrid clones received similar total photosynthetically active radiation (PAR) within the LF and LL treatments. Visible foliar symptoms, leaf gas exchange, and growth were measured. More severe O(3) induced foliar symptoms were observed on ramets within the LF and LL treatments than within the HL treatment for both clones. The LF treatment resulted in significantly greater foliar injury than the LL treatment for NE388. The LF and LL treatments generally resulted in lower photosynthetic rates (Pn) for both clones, but did not affect stomatal conductance (g(wv)); therefore, the ratios of g(wv)/Pn and the O(3) uptake/Pn were greatest in plants grown under the LF treatment, followed by those grown under LL treatment; plants grown under HL had the lowest ratios of g(wv)/Pn and O(3) uptake/Pn. Greater ratios of g(wv)/Pn and O(3) uptake/Pn were consistently associated with more severe visible foliar symptoms. The negative impacts of the LF treatment on growth were greater than those of the LL treatment. Results indicate that not only the integral, but also the pattern of photo flux density, may affect carbon gain in plants. Increased foliar injury may be expected under light fleck conditions due to the limited repair capacity as a result of continuity of O(3) uptake while photosynthesis decreases under LL conditions.  相似文献   

12.
Shoots of a soil- or sand-grown dwarf bean variety were exposed to O(3) concentrations in the range of 500 to 900 ppb for up to 5 h. The measured exchange rates of water vapor and CO(2) during exposures were used to calculate stomatal and mesophyll conductances averaged across all leaves. Changes in conductances were related to exposure duration and absorbed O(3) totals (AOT). Both conductances were more sensitive to AOT in sand-grown plants, which also had more visible injury under comparable AOT values. Measurements of the relationship between CO(2) exchange and internal CO(2) concentration of single leaflets of treated plants also showed greater sensitivity of CO(2)-saturated photosynthesis in sand-grown plants. Diffusional processes were not likely to have been the cause of dissimilar responses because the O(3) absorption rate was lower in sand-grown plants. A difference in the scaveninng capacities in cells is suggested to be the cause of the differences in sensitivity to acute O(3) exposure.  相似文献   

13.
To study the biochemical mechanism of EDU protection against ozone injury, peroxidase, ascorbate-dependent peroxidase, and catalase activities, and the contents of ascorbic acid, dehydroascorbic acid, malondialdehyde and soluble protein were measured in Phaseolus vulgaris L. cv. Lit exposed to ozone and ethylenediurea (EDU) in open-top chambers. Plants not treated with EDU showed foliar bronzing due to ozone, while EDU-treated plants were not affected. EDU application modified the reaction of biochemical parameters to ozone. Soluble protein content was elevated by EDU. Peroxidase activity increased with ozone exposure in untreated plants only, while ascorbate-dependent peroxidase activity was lower in EDU treated plants. Catalase activity decreased in EDU-untreated plants. The ratio of ascorbic acid to dehydroascorbic acid was significantly increased in EDU treated plants. These results suggest that EDU might induce ascorbic acid synthesis and therefore provide the plant with a very potent antioxidant. Or the content of hydrogen peroxide was reduced due to other unknown processes and caused a delay in foliar senescence, regardless of whether these processes were ozone-induced or due to natural aging processes.  相似文献   

14.
Pina JM  Moraes RM 《Chemosphere》2007,66(7):1310-1314
Psidium guajava 'Paluma' was evaluated under field conditions as a tropical bioindicator species of ozone (O(3)). Three exposures of 90 days each were performed (June 21, 2004-March 19, 2005). In each one of them, saplings of 'Paluma' (n=30) were exposed to ambient air at a site in S?o Paulo (Brazil) with high ozone concentrations, and in a greenhouse with charcoal-filtered air. Ozone-like visible foliar injuries were observed during the winter, spring and summer exposures, when AOT40 reached 6166ppbh, 3504ppbh and 4828ppbh, respectively. No injuries were observed in the plants kept under filtered air. The injuries consisted in red stippling on adaxial leaf surfaces. They did not cover the veins and appeared first in older leaves, becoming more intense as the exposure period increased. Injury incidence, severity, and the cumulative exposure threshold at injury onset varied among the exposure periods. AOT40 explained partly the incidence, severity and leaf injury index LII (r(2)=0.52, 0.39, 0.38, respectively, p=0.002). The results confirm the potential of the species as an O(3)-sensitive bioindicator.  相似文献   

15.
Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review   总被引:17,自引:0,他引:17  
At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation.  相似文献   

16.
17.
Saskatoon serviceberry or Saskatoon (Amelanchier alnifolia Nutt. cv. Smoky) seedlings were planted at five study sites within a 35,000 km(2) airshed, that is influenced by a number of isolated stationary sources of sulfur dioxide (SO(2)), oxides of nitrogen and hydrocarbons, among others. The locations of the five sites were based on the results of a meteorological dry deposition model for the oxides of sulfur and nitrogen. Visible foliar injury responses of Saskatoon were used as a biological indicator of SO(2) exposures, through monthly field surveys. During late July 1998, unifacial, interveinal chlorosis was observed on some 12% of the seedlings at one study site. By September, the chlorosis had become more severe (necrosis) on some 70% of the plants at that site. Site specific ambient SO(2) levels were relatively low (maximum 5-min concentration of 52.8 ppb). Similar data were unavailable for all, but one other site. Therefore, foliar total S and SO(4)(2-)-S concentrations were analyzed in September at four of the five study sites. Previously soil SO(4)(2-)-S at these sites had been analyzed. There were spatial variabilities among these parameters. Based on the overall examination of these data, it is concluded that the observed visible injury symptoms were due to chronic SO(2) exposures, exacerbated by the presence of ozone (O(3)). Independent of this literature based speculation, visible foliar injury responses of Saskatoon can be used as a biological indicator for acute or chronic ambient SO(2) exposures, in the presence of other phytotoxic air pollutants.  相似文献   

18.
Two white clover (Trifolium repens L.) clones with varying sensitivity to O(3) are being developed as a system to indicate effects of ambient concentrations of tropospheric O(3) on plants. One clone (NC-S) is highly sensitive to O(3) and the other (NC-R) is highly resistant. The system relies on periodic measurement of foliar injury, foliar chlorophyll, and forage production of NC-S and NC-R grown in 15-liter pots throughout a summer season. Relative amounts of foliar injury and ratios (NC-S/NC-R) for chlorophyll and forage weight can be used to estimate biologically effective ambient O(3) concentrations. The effect of variation in rooting media formulation and fertilizer rate on response of NC-S and NC-R to ambient O(3) was determined in the present study. In the rooting medium experiment, clover was grown in three mixtures of sandy loam topsoil:course washed sand:Metro Mix 220 (ratios (by volume) of 2:1:1, 2:1:5, and 6:1:1). In the fertilizer experiment, clover was grown in the 2:1:1 medium at four fertilizer rates (soluble 5-11-26 (N-P-K) at 0.0, 0.5, 1.0, or 2.0 g per pot). Ozone caused more foliar injury, more chlorosis, and a greater decrease in forage production of NC-S than of NC-R in all studies. Rooting media treatments affected both clones similarly and occasional clone x media interactions were judged to be random. Forage production by NC-S, relative to that of NC-R, was generally greater in the 0.0 fertilizer treatment, but the forage ratios were similar at all other fertilizer treatments. The relative response of NC-S and NC-R to O(3) is fairly stable under cultural conditions that support normal plant growth.  相似文献   

19.
Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.  相似文献   

20.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号