首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
以贵州六枝特区龙岭煤矿大巷中泥样作为厌氧型甲烷氧化菌富集源,以甲烷作为培养过程中唯一碳源,从中筛选出可以在低氧(1.99%)或无氧条件下对甲烷具有较高降解效能的菌种,并自主开发出甲烷氧化菌降解煤吸附甲烷实验分析系统。实验结果表明,在压力为1~5 MPa范围内无论是低氧或无氧状况下,甲烷压力越大越有利于其降解;稀氧条件下煤样对甲烷的吸附量相对于纯甲烷气体吸附量有所降低,然而在同等压力条件下稀氧环境中二氧化碳的增加量及甲烷的降解率都要明显大于无氧条件下,低氧状况下甲烷的最高降解率为47%,最大二氧化碳生成量可达40 cm^3。  相似文献   

2.
为了研究好氧型微生物对低氧气浓度环境条件下煤吸附甲烷的降解效能,培养、分离、初步鉴定了高效降解甲烷的好氧型甲烷氧化菌。并在高压容量法瓦斯吸附-解吸装置的基础上,自主开发了低氧环境下甲烷降解实验分析系统,研究了氧气浓度为0%、5%和15%三种条件下甲烷氧化菌的降解效能,通过对实验前后甲烷减少量,二氧化碳增加量,氧气减少量进行分析。结果表明:在氧气浓度(0%~15%)范围内,随着氧气浓度升高及降解时间的持续,甲烷的减少量可达130.5 cm3,二氧化碳的增加量最高可达25.7 cm3,同时最多消耗69.0 cm3氧气;在无氧条件下,好氧型甲烷氧化菌的生理活性受到了一定的限制,但最高仍然可以降解11.9 cm3的甲烷,生成二氧化碳3.5 cm3。  相似文献   

3.
自主研制了原煤体赋存条件下煤吸附甲烷微生物降解实验装置。从煤矿巷道土壤中筛选出一株TypeⅠ型Methylomarinum属甲烷氧化菌,将菌液高压注入加载不同轴压的煤体试件内。实验结果表明:甲烷降解率随着加载轴压的增大先快速降低而后缓慢降低的变化趋势,并且满足关系式y=a-b·lnx;加载相同的轴压和围压条件下,煤样坚固性系数越大、其降解率也越高;定量分析了甲烷氧化菌代谢产物二氧化碳量的变化,发现甲烷的消耗量和二氧化碳的生成量基本符合13 1的比例。  相似文献   

4.
为进一步优化和完善基于煤吸附瓦斯微生物治理的基础方法,自主研制了模拟实体煤赋存环境下煤吸附甲烷微生物降解试验装置。从煤矿回风巷土壤中分离出一株Ty PeⅠ型Methylomarinum属甲烷氧化菌,通过定量、连续地控制加载轴压,将菌种以高压菌液的方式注入煤体试件内,研究其对不同煤样吸附甲烷的降解效能,并分析甲烷氧化菌特征代谢产物之一CO2体积的变化。结果表明:在轴压1~5 MPa范围内,甲烷降解率前期受轴压影响较大,后期趋于平缓;加载相同轴压下的对比试验表明,普氏系数越大、甲烷降解率越高;甲烷的消耗体积和CO2的生成体积大致符合12:1的比例。  相似文献   

5.
在20 L爆炸实验装置中,开展了3种不同中值粒径的EVA树脂粉尘/甲烷/空气所组成的杂混物爆炸特性研究,探究了甲烷浓度对粉尘爆炸下限、最大爆炸压力的影响。结果表明,尽管添加的甲烷气体浓度低于爆炸下限,仍使得粉尘爆炸下限得以降低,粒径较大的EVA III粉尘,当甲烷体积分数为1%时,爆炸下限降低约25%;粒径较小的EVA I粉尘,当混入甲烷体积分数为4%时,爆炸下限则降低80%;甲烷体积分数每增加1%,可燃粉尘最大爆炸压力上升约10%,但对于粒径较小的EVA I粉尘,当甲烷体积分数为4%时,最大爆炸压力的上升呈现突变趋势,上升近50%。  相似文献   

6.
氢气对预混甲烷/空气燃爆过程的影响   总被引:1,自引:0,他引:1  
为研究氢气的加入对不同体积分数甲烷/空气预混爆炸过程影响的规律,在尺寸为150 mm×150 mm×1 000 mm的管道中通入体积分数为8%、9.5%和11.5%的甲烷/空气预混气体,然后加入一定体积分数的氢气。氢气所占体积分数分别为0、0.74%、1.48%、2.95%、4.40%。分别对加入不同体积分数的甲烷爆炸过程中爆炸压力、火焰图像和爆炸温度进行测量、分析。结果表明:只有在8%纯甲烷爆炸时能够形成完整的郁金香火焰。8%和9.5%甲烷体积分数试验中,氢气的加入使火焰面由上下对称变得不对称,火焰阵面上移,火焰速度加快;爆炸中的最大超压增大并且最大超压时刻点提前。在11.5%的甲烷加氢试验中,随加氢量增加,爆炸压力、温度、火焰速度分别略微降低。这表明氢气的加入在体积分数为8%的爆炸反应中较大地促进了反应,而体积分数为11.5%时加氢后爆炸反应减弱。通过理论分析计算了半封闭管道中体积分数为9.5%甲烷爆炸温度和实测温度之间的差异。爆炸压力和温度的变化能很好地反映加入氢气对甲烷爆炸的影响。  相似文献   

7.
为了研究真空紫外光降解瓦斯过程的反应动力学规律,在自制的真空石英光化学反应器中以含甲烷标准气体模拟矿井瓦斯,运用Langmuir-Hinshelwood(L-H)拟一级反应动力学模型对不同光照强度、氧气体积分数、甲烷初始体积分数和水分子体积分数下瓦斯(甲烷)的降解过程进行拟合.结果表明:真空紫外光降解瓦斯反应动力学规律符合一级反应动力学特性;光照强度、甲烷初始体积分数、氧气体积分数和水分子体积分数是影响真空紫外光降解瓦斯的主要因素;瓦斯(甲烷)降解的反应速率随光照强度和氧气体积分数增大而增大,随甲烷初始体积分数增大而减小,随水分子体积分数增大而先增大后减小.  相似文献   

8.
泄压点火不同端管道内甲烷爆炸特性数值模拟   总被引:1,自引:0,他引:1  
结合气体爆炸传播机理,利用FLACS软件对泄压点火不同端两种方式(泄压口通径为25 mm和泄压口完全开放)下甲烷的爆炸过程进行数值模拟,获得了5种体积分数甲烷的爆炸特性参数,分析得出:两种不同泄压方式下,10%,9.5%,11%体积分数的甲烷爆炸特性变化趋势接近,7%,8%的甲烷较前三者有所延迟;5种甲烷在管道中心处的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值都随甲烷体积分数的增大而逐渐上升,在10%时达到最大,继续增加甲烷体积分数则出现下降趋势,最大爆炸压力时间变化趋势与其相反;管道中心处的爆炸产物浓度随着甲烷体积分数的增大而增大,与泄压方式无关;增大管道泄压口面积有利于爆炸压力以及爆炸高温高压气体的释放,使得各体积分数甲烷的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值均下降,到达最大爆炸压力的时间均增大。  相似文献   

9.
为分析高校实验室甲烷气瓶在泄漏后的危险性,基于计算流体力学(CFD)方法,以某高校实验室楼层为模型,使用Fluent软件模拟甲烷泄漏后的扩散过程,研究甲烷扩散规律,分析风速与通风条件对甲烷扩散的影响,判定甲烷危险爆炸区域.结果表明,甲烷流动受建筑结构影响显著,室内甲烷体积分数呈梯度分布,良好通风环境下的高风速对气体输送作用强,湍动能大,因而能快速降低甲烷体积分数,低风速条件下甲烷滞留在室内时间更久而易增加风险.甲烷气瓶发生泄漏时,爆炸区间主要集中在室内顶板,靠近泄漏点正上方的墙壁死角体积分数最高,并且气云在泄漏点同一侧的空间活动更多,相邻室内的甲烷旋流发生累积.最后针对模拟结果提出防控及应急措施,如危险化学品类气瓶的实验室选址、室内结构及监测装置的考虑等,并根据泄漏特性对撤离时的疏散路线给出建议.  相似文献   

10.
为了研究船舶载运煤炭甲烷释放规律,基于Fick扩散定律建立了货舱甲烷体积分数计算模型,分析了不同扩散系数条件下甲烷释放量与时间的关系,确定了空隙系数的取值范围,通过对某船舶煤炭运输过程中甲烷体积分数随船实测对模型进行了验证.结果表明,货舱甲烷体积分数随运输时间增加而增加,扩散系数为1.0×10-8 cm2/s时,甲烷释放量达到极大值;煤炭的空隙系数基本在0.53~ 0.57 m3/t之间.当煤炭极限甲烷解吸量为1.6 ~ 3.83 m3/t时,货舱甲烷最高体积分数在0.53% ~ 1.22%,5个货舱中4个货舱的甲烷释放量与理论计算相吻合,1个货舱的最大甲烷释放量高出理论计算量6%,船运煤炭过程中的甲烷释放计算模型与实测结果较为吻合.对于甲烷体积分数超限的货舱,及时通风可使甲烷体积分数迅速降低,有效地解决船运煤炭过程中甲烷体积分数超限的问题.  相似文献   

11.
利用微生物技术治理煤矿瓦斯的研究展望   总被引:3,自引:1,他引:3  
目前,我国的煤矿瓦斯防治技术主要为通风、抽放等物理方法,该类方法仍不能完全满足防治煤矿瓦斯灾害的安全要求。笔者提出一种治理煤矿瓦斯的新思路,采用一种新的控制方法,试图通过生物技术使瓦斯涌出量减少,防治煤矿瓦斯灾害。为此,对应用微生物技术治理煤矿瓦斯的可行性进行了分析,简单介绍了甲烷氧化菌的氧化机理及其在其他领域的应用,并通过初步试验对甲烷氧化菌降解煤样瓦斯的效果进行了测定,从而对其有了感性的认识,在已有的对甲烷氧化菌的研究和初步试验的基础上,对应用甲烷氧化菌解决煤矿瓦斯危害进行了展望。  相似文献   

12.
甲烷燃烧具有环境污染小、放热量大等优点,但甲烷燃烧转化率受很多因素影响,因此,研究甲烷燃烧过程的转化率就显得尤为重要。基于计算流体力学中的涡耗散模型,运用有限容积法建立甲烷和空气非预混燃烧与扩散数学模型。针对具有3个小挡板,一个喷嘴的圆柱型燃烧器进行数值研究。结论:随着不同入口空气速度的逐渐增加,甲烷-空气非预混燃烧反应不充分,在轴向距离2 m处,反应生成的水和二氧化碳的含量逐渐减少,然而氧气增多,甲烷燃烧的转化率变低;随着不同入口甲烷速度的逐渐增加,甲烷-空气非预混燃烧反应充分,转化率变高;随着不同入口甲烷温度的增加,氧气浓度增加,甲烷-空气非预混燃烧反应不充分,转化率降低。  相似文献   

13.
利用FLACS软件分析初始压力、初始温度对CH4/CO2/air混合气的爆炸温度、最大爆炸压力的影响;并与计算值对比。结果表明:①初始压力对爆炸温度、爆炸前后压力比影响可以忽略。常温变压条件下二氧化碳浓度增加,爆炸温度与爆炸前后压力比基本呈线性降低。常压变温条件较复杂,二氧化碳浓度升高爆炸温度降低;初始温度对低浓度(<15%)二氧化碳混合气爆炸温度几乎没有影响,而高浓度(>15%)二氧化碳混合气爆炸温度随初始温度增加而升高;最大爆炸压力随二氧化碳浓度以及温度升高而降低。②在设定条件下,低浓度(5%~10%)二氧化碳混合气爆炸温度计算值与模拟值相对误差小于5.5%,吻合较好;最大爆炸压力计算值与模拟值相对误差在6.5%~10.5%之间。  相似文献   

14.
煤矿井下有害气体的浓度监测对煤矿生产安全预警至关重要。介绍了一种基于非分散红外光谱技术能够同时定量探测煤矿井下一氧化碳、甲烷等有害气体的方法。入射红外光经过高速旋转的滤光轮,得到各种待测气体相应滤波通道的调制光信号,经怀特池中待测气体吸收后得到各种气体的吸光度。通过非线性最小二乘拟合吸收光与被测气体浓度,得到测量系统的浓度定标曲线,一氧化碳、甲烷和二氧化碳三者定标拟合相关系数分别为0.9992、0.9996和0.9998。分析了系统的测量精度,通过比较样气标准浓度与实测浓度大小,发现所有被测气体的这两组数据的相关性均大于0.998,测量误差均小于5%。实验结果表明,采用非分散红外光谱技术可以实现煤矿井下多组分有害气体的同步精确探测,为扩展煤矿安全预警技术手段提供了参考。  相似文献   

15.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

16.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

17.
为了探究风速对高层建筑火灾时环境中温度、烟气浓度、CO浓度分布状态的影响,以央视北配楼火灾为模型背景,应用火灾动力学软件FDS,对火灾进行模拟与分析。通过讨论不同风速下火源温度中心、烟气浓度中心、CO浓度中心离着火面距离与高度之间的关系,得到风速一定时各中心的位置与高度之间的变化规律,以及该变化规律与风速之间的关系,风速小于3m/s时各中心位置随风速变化较明显;风速越大,温度、烟气浓度、CO浓度越高,当风速小于2m/s时各值增量随风速增加明显;与其他因素相比,温度对防火间距的影响最大。  相似文献   

18.
通过对淮北芦岭矿Ⅱ824-2综放工作面瓦斯综合治理的试验研究,摸索出了高瓦斯综放工作面瓦斯治理的有效方法,取得了较好的瓦斯抽放和通风排放效果.  相似文献   

19.
甲烷氧化菌液在进入煤储层后会产生较高的毛管压力,且随着甲烷氧化菌降解煤层瓦斯的进行,毛管压力逐渐增大,容易引起水锁伤害。采取向甲烷氧化菌菌液加入复配表面活性剂以期减缓菌液造成的水锁伤害,通过测试所选表面活性剂十二烷基苯磺酸钠(SDBS)与椰子油脂肪酸二乙醇酰胺(CDEA)对菌液表面张力的降低程度来了解表面活性剂与菌液的配伍比例,并对含复配表面活性剂的甲烷氧化菌对煤层甲烷的降解进行研究。研究结果表明:表面活性剂与菌液最佳配伍比例为SDBS∶CDEA为1∶4,最佳配伍浓度为0.5%,且表面活性剂在菌液中稳定性较好;菌液中添加复配表活剂20 mL,在混合气体压力为2 MPa、氧浓度为 1%、温度为 30 ℃时,添加复配表面活剂菌液的甲烷最终降解率为51.65%,比未添加复配表面活剂菌液高出11%左右。因此,向甲烷氧化菌菌液中添加复配表面活性剂具有很好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号