首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

2.
The North China Plain (NCP) is one of the most important regions for food production in China, with its agricultural system being significantly affected by the undergoing climate change and vulnerable with water stress. In this study, the Vegetation Interface Processes (VIP) model is used to evaluate crop yield, water consumption (ET), and water use efficiency (WUE) of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double cropping system in the NCP from 1951 to 2006. Their responses to future climate scenarios of 21st century projected by the GCM (HadCM3) with Intergovernmental Panel on Climate Change Special Report on Emission Scenario (IPCC SRES) A2 and B1 emissions are investigated. The results show a rapid enhancement of crop yield in the past 56 years, accompanying with slight increment of ET and noticeable improvement of WUE. There exist spatial patterns of crop yield stemmed mainly from soil quality and irrigation facilities. For climate change impacts, it is found that winter wheat yield will significantly increase with the maximum increment in A2 occurring in 2070s with a value of 19%, whereas the maximum in B1 being 13% in 2060s. Its ET is slightly intensified, which is less than 6%, under both A2 and B1 scenarios, giving rise to the improvement of WUE by 10% and 7% under A2 and B1 scenarios, respectively. Comparatively, summer maize yield will gently decline by 15% for A2 and 12% for B1 scenario, respectively. Its ET is obviously increasing since 2050s with over 10% relative change, leading to a lower WUE with more than 25% relative change under both scenarios in 2090s. Therefore, possible adaptation countermeasures should be developed to mitigate the negative effects of climate change for the sustainable development of agro-ecosystems in the NCP.  相似文献   

3.
Climate change and variability has the potential to impact crop growth by altering components of a region’s water balance. Evapotranspiration driven by higher temperatures can directly increase the demand of irrigation water, while indirectly decreasing the length of the annual crop growth period. The accompanying change in precipitation also affects the need to supply irrigation water. This study focuses on the spatial and temporal variation of historical and future irrigation water requirements of winter wheat (Triticum aestivum L.) in the Haihe River Basin, China. Irrigation water requirement is estimated using a simple water balance model. Climate change is incorporated by using predicted changes in daily precipitation and temperature. Changes in evapotranspiration and crop phenophase are then calculated for historical and future climate. Over the past 50 years, a decrease in total net irrigation water requirement (NIR) was observed mainly due to a reduction in the crop growth period length. The NIR is shown to decrease 2.8~6.9 mm with a 1-day reduction in growth period length. In the future, sowing period will come later and the heading period earlier in the year. The NIR in November, March and April is predicted to increase, especially in April. Increased NIR can result in increased water deficit, causing negative impacts on crop yield due to water stress. In the future, more attention should be paid to water resource management during the annual crop growth period of winter wheat in the Haihe River Basin.  相似文献   

4.
Brilli  L.  Lugato  E.  Moriondo  M.  Gioli  B.  Toscano  P.  Zaldei  A.  Leolini  L.  Cantini  C.  Caruso  G.  Gucci  R.  Merante  P.  Dibari  C.  Ferrise  R.  Bindi  M.  Costafreda-Aumedes  S. 《Mitigation and Adaptation Strategies for Global Change》2019,24(3):467-491

The need to reduce the expected impact of climate change, finding sustainable ways to maintain or increase the carbon (C) sequestration capacity and productivity of agricultural systems, is one of the most important challenges of the twenty-first century. Olive (Olea europaea L.) groves can play a fundamental role due to their potential to sequester C in soil and woody compartments, associated with widespread cultivation in the Mediterranean basin. The implementation of field experiments to assess olive grove responses under different conditions, complemented by simulation models, can be a powerful approach to explore future land-atmosphere C feedbacks. The DayCent biogeochemical model was calibrated and validated against observed net ecosystem exchange, net primary productivity, aboveground biomass, leaf area index, and yield in two Italian olive groves. In addition, potential changes in C-sequestration capacity and productivity were assessed under two types of management (extensive and intensive), 35 climate change scenarios (ΔT-temperature from +?0 °C to +?3 °C; ΔP-precipitation from 0.0 to ??20%), and six areas across the Mediterranean basin (Brindisi, Coimbra, Crete, Cordoba, Florence, and Montpellier). The results indicated that (i) the DayCent model, properly calibrated, can be used to quantify olive grove daily net ecosystem exchange and net primary production dynamics; (ii) a decrease in net ecosystem exchange and net primary production is predicted under both types of management by approaching the most extreme climate conditions (ΔT?=?+?3 °C; ΔP?=???20%), especially in dry and warm areas; (iii) irrigation can compensate for net ecosystem exchange and net primary production losses in almost all areas, while ecophysiological air temperature thresholds determine the magnitude and sign of C-uptake; (iv) future warming is expected to modify the seasonal net ecosystem exchange and net primary production pattern, with higher photosynthetic activity in winter and a prolonged period of photosynthesis inhibition during summer compared to the baseline; (v) a substantial decrease in mitigation capacity and productivity of extensively managed olive groves is expected to accelerate between +?1.5 and +?2 °C warming compared to the current period, across all Mediterranean areas; (vi) adaptation measures aimed at increasing soil water content or evapotranspiration reduction should be considered the mostly suitable for limiting the decrease of both production and mitigation capacity in the next decades.

  相似文献   

5.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

6.
This study evaluates the theoretical impact of climate change on yields and water use of two crops with different responses to increased CO2 and which represent contrasting agricultural systems in Spain. In all cases the simulated effects of a CO2-induced climate change depended on the counteracting effects between higher daily ET rates, shortening of crop growth duration and changes in precipitation patterns as well as the simulated effects of CO2 on the water use efficiency of the crops. For summer irrigated crops such as maize, the yield reductions and the exacerbated problems of irrigation water availability simulated with climate change may force the crop out of production in some regions. For winter dryland crops such as wheat, productivity increased significantly in some regions, suggesting a northward shift of area suitable for wheat production in future climates. The study considered strategies for improving the efficiency of water use based on the optimization of crop management decisions in a CO2-driven warmer climate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Climate change is affecting the productivity of crops and their regional distribution. Strategies to enhance local adaptation capacity are needed to mitigate climate change impacts and to maintain regional stability of food production. The objectives of this study were to simulate the climate change effects on phenological stages, Leaf Area Index (LAI), biomass and grain yield of maize (Zea mays L.) in the future and to explore the possibilities of employing irrigation water and planting dates as adaptation strategies to decrease the climate change impacts on maize production in Khorasan Razavi province, Iran. For this purpose, we employed two types of General Circulation Models ((United Kingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1). Long Ashton Research Station-Weather Generator (LARS-WG) was used to produce daily climatic parameters as one stochastic growing season for each projection period. Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters. Time period from cultivation until anthesis and maturity were reduced in majority of scenarios as affected by climate change. The results indicated that the grain yield of maize may be reduced (11 % to 38 %) as affected by climate change based on common planting date in baseline and changed (?61 % to 48 %) in response to different irrigation regimes in the future climate change, under all scenarios and times. In general, earlier planting date (1 May) and decreasing irrigation intervals in the anthesis stage (11 applications) caused higher yield compared with other planting dates due to adaption to high temperature. Based on our findings, it seems that management of irrigation water and planting dates can be beneficial for adaptation of maize to climate change in this region.  相似文献   

8.

Rice (Oriza sativa) feeds nearly half of the world’s population. Regional and national studies in Asia suggest that rice production will suffer under climate change, but researchers conducted few studies for other parts of the world. This research identifies suitable areas for cultivating irrigated rice in Colombia under current climates and for the 2050s, according to the Representative Concentration Pathway (RCP) 8.5 scenario. The methodology uses known locations of the crop, environmental variables, and maximum entropy and probabilistic methods to develop niche-based models for estimating the potential geographic distribution of irrigated rice. Results indicate that future climate change in Colombia could reduce the area that is suitable for rice production by 60%, from 4.4 to 1.8 million hectares. Low-lying rice production regions could be the most susceptible to changing environmental conditions, while mid-altitude valleys could see improvements in rice-growing conditions. In contrast to a country like China where rice production can move to higher latitudes, rice adaptation in tropical Colombia will favor higher elevations. These results suggest adaptation strategies for the Colombian rice sector. Farmers can adopt climate-resilient varieties or change water and agronomic management practices, or both. Other farmers may consider abandoning rice production for some other crop or activity.

  相似文献   

9.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

10.
Meeting the growing demand for food in the future will require adaptation of water and land management to future conditions. We studied the extent of different adaptation options to future global change in the Mediterranean region, under scenarios of water use and availability. We focused on the most significant adaptation options for semiarid regions: implementing irrigation, changes to cropland intensity, and diversification of cropland activities. We used Conversion of Land Use on Mondial Scale (CLUMondo), a global land system model, to simulate future change to land use and land cover, and land management. To take into account future global change, we followed global outlooks for future population and climate change, and crop and livestock demand. The results indicate that the level of irrigation efficiency improvement is an important determinant of potential changes in the intensity of rain-fed land systems. No or low irrigation efficiency improvements lead to a reduction in irrigated areas, accompanied with intensification and expansion of rain-fed cropping systems. When reducing water withdrawal, total crop production in intensive rain-fed systems would need to increase significantly: by 130% without improving the irrigation efficiency in irrigated systems and by 53% under conditions of the highest possible efficiency improvement. In all scenarios, traditional Mediterranean multifunctional land systems continue to play a significant role in food production, especially in hosting livestock. Our results indicate that significant improvements to irrigation efficiency with simultaneous increase in cropland productivity are needed to satisfy future demands for food in the region. The approach can be transferred to other similar regions with strong resource limitations in terms of land and water.  相似文献   

11.
Forest ecosystems represent the dominant form of land cover in the northeastern United States and are heavily relied upon by the region’s residents as a source of fuel, fiber, structural materials, clean water, economic vitality, and recreational opportunities. Although predicted changes in climate have important implications for a number of ecosystem processes, our present understanding of their long-term effects is poor. In this study, we used the PnET-CN model of forest carbon (C), nitrogen (N) and water cycling to evaluate the effects of predicted changes in climate and atmospheric carbon dioxide (CO2) on forest growth, C exchange, water runoff, and nitrate ( $ {\text{NO}}^{ - }_{3} $ ) leaching at five forest research sites across the northeastern U.S. We used four sets of statistically downscaled climate predictions from two general circulation models (the Hadley Centre Coupled Model, version 3 and the Parallel Climate Model) and two scenarios of future CO2 concentrations. A series of model experiments was conducted to examine the effects of future temperature, precipitation, CO2, and various assumptions regarding the physiological response of forests to these changes. Results indicate a wide range of predicted future growth rates. Increased growth was predicted across deciduous sites under most future conditions, while growth declines were predicted for spruce forests under the warmest scenarios and in some deciduous forests when CO2 fertilization effects were absent. Both climate and rising CO2 contributed to predicted changes, but their relative importance shifted from CO2-dominated to climate-dominated from the first to second half of the twenty-first century. Predicted runoff ranged from no change to a slight decrease, depending on future precipitation and assumptions about stomatal response to CO2. Nitrate leaching exhibited variable responses, but was highest under conditions that imposed plant stress with no physiological effects of CO2. Although there are considerable uncertainties surrounding predicted responses to climate change, these results provide a range of possible outcomes and highlight interactions among processes that are likely to be important. Such information can be useful to scientists and land managers as they plan on means of examining and responding to the effects of climate change.  相似文献   

12.
Development and evaluation of mitigation strategies are fundamental to manage climate change risks. This study was built on (1) quantifying the response of maize (Zea mays L.) grain yield to potential impacts of climate change and (2) investigating the effectiveness of changing sowing date of maize as a mitigation option for Khorasan Province which is located in northeast of Iran. Two types of General Circulation Models (GCM: (United Kingdom Met Office Hadley Center :HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1) at four locations (Mashhad, Birjand, Bojnourd and Sabzevar) employed in this study. Long Ashton Research Station-Weather Generator (LARS-WG) was employed for generating the future climate. The Cropping System Model (CSM)-CERES-Maize was used for crop growth simulation under projected climate conditions. The results showed the simulated grain yields of maize gradually would decrease (from −1% to −39%) during future 100 years compared to baseline under different scenarios and two GCM at all study locations. The simulation results suggested that delayed sowing date from May to June at all study locations, except Sabzevar location is the most effective mitigation option for avoiding thermal stress at end of growth period. In addition, shifting in sowing date to March or April will be beneficial in terms of obtaining higher yields in Sabzevar. Grain yield did not show special trend from north to south of Khorasan Province in the future climate. In general, change of sowing date may be quite beneficial to mitigate climate change impacts on grain yield of maize in northeast of Iran.  相似文献   

13.
This paper describes the results of combining several simple models to assess the changes in plant sensitivity to direct effects of gaseous air pollutants that result from changes in climatic conditions. This research has been carried out within the framework of a project on the integrated assessment of regional air pollution and climate change in Europe (AIR-CLIM). The modulation of plant sensitivity to gaseous pollutants has been studied using a model of stomatal conductance that simulates the flow of water vapor from the atmosphere to the plant interior through the stomata. The model has been applied to Norway spruce (Picea abies L.) and European beech (Fagus sylvatica L.). The critical atmospheric concentration levels for SO2 and NOx adopted in international environmental norms have been modified to maintain in different climate scenarios a concentration level inside the plant equivalent to the critical limit in 1990. These simulated critical concentrations are compared with the predicted atmospheric concentrations. Our work indicates that the response can be very different for the two types of forests and in different regions. In general, climate change sensitivity increases in boreal areas and decreases in temperate areas due to temperature and water stress. If the air pollution levels are in the predicted ranges, the problems are less severe now than in 1990, but the cumulative stress will still be significant.  相似文献   

14.
This study aims to identify therelationship between the climatic variablesand yields of three crops (wheat (Triticum aestivum L.), maize (Zeamays L.) and cotton (Gossypiumhirsitum L.) in the Cukurova region ofTurkey. In the study, time series data wereused to analyse crop yields across variousclimate factors for the period 1975 to1999. The climatic variables were arrangedaccording to phonological periods of theexamined crops such as planting, floweringand harvesting time. A linear perturbationmodel (LPM) was used for the identificationof the role of climate variables. 27climatic factors were considered asexplanatory variables in the model. Astepwise selection method in the selectionand introduction of independent variableswas used for regression equation for wheat,maize and cotton. The results of the linearperturbation model (LPM) showed that theR2 values for wheat, maize and cottonwere found 46.1%, 57.2% and 74.5%,respectively. The highest variationcoefficient (CV) was found in maizeproduction (43.4%) followed by cotton(23.14%) and wheat (15.29%). The mostsignificant climatic factor affectingdeviations in crop yields is related intemperature at planting, flowering andharvesting time. It is suggested thatfarmers would be better off with theapplying adaptation measurements. Therefore, policy makers should focusefforts on reducing production risksproviding climatic information anddeveloping risk management institutions.  相似文献   

15.
Crop simulation models are frequently used to estimate the impact of climate change on crop production. However, few studies have evaluated the model performance in ways that most researchers practiced in climate impact studies. In this article, we examined the reliability of the EPIC model in simulating grain sorghum (Sorghum bicolor (L.) Moench) yields in the U.S. Great Plains under different climate scenarios, namely in years with normal or extreme temperature and precipitation. We also investigated model uncertainties introduced by input data that are not site-specific but commonly used or available for climate change studies. Historical field trial data of sorghum at the Mead Experimental Center, NE, were used for model evaluations. The results showed that overall model reliability was about 56%. The mean absolute relative error (absRE) was about 29%. The degree of accuracy and reliability varied with climate-classes and nitrogen (N)-treatments. The largest bias occurred in drought years (RE = ?25%) and the most unreliable results were found in N-0 treatment (reliability = 32%). There was more than 69% probability that input-data-induced uncertainties were limited to less than 20% of absRE. Our results support the application of the EPIC model to climate change impact studies in the U.S. Great Plains. However, efforts are needed to improve the accuracy in simulating crop responses to extreme water- and nitrogen-stressed conditions.  相似文献   

16.
Drybeans (Phaseolus vulgaris L.) are an important subsistence crop in Central America. Future climate change may threaten drybean production and jeopardize smallholder farmers’ food security. We estimated yield changes in drybeans due to changing climate in these countries using downscaled data from global circulation models (GCMs) in El Salvador, Guatemala, Honduras, and Nicaragua. We generated daily weather data, which we used in the Decision Support System for Agrotechnology Transfer (DSSAT) drybean submodel. We compared different cultivars, soils, and fertilizer options in three planting seasons. We analyzed the simulated yields to spatially classify high-impact spots of climate change across the four countries. The results show a corridor of reduced yields from Lake Nicaragua to central Honduras (10–38 % decrease). Yields increased in the Guatemalan highlands, towards the Atlantic coast, and in southern Nicaragua (10–41 % increase). Some farmers will be able to adapt to climate change, but others will have to change crops, which will require external support. Research institutions will need to devise technologies that allow farmers to adapt and provide policy makers with feasible strategies to implement them.  相似文献   

17.
If no timely measures are taken to adapt Egyptian agriculture to possible climate warming, the effects may be negative and serious. Egypt appears to be particularly vulnerable to climate change because of its dependence on the Nile River as the primary water source, its large traditional agricultural base, and its long coastline, already undergoing both intensifying development and erosion. A simulation study characterized potential yield and water use efficiency decreases on two reference crops in the main agricultural regions with possible future climatic variation, even when the beneficial effects of increased CO2 were taken into account. On-farm adaptation techniques which imply no additional cost to the agricultural system, did not compensate for the yield losses with the warmer climate or improve the crop water-use efficiency. Economic adjustments such as the improvement of the overall water-use efficiency of the agricultural system, soil drainage and conservation, land management, and crop alternatives are essential. If appropriate measures are taken, negative effects of climate change in agricultural production and other major resource sectors (water and land) may be lessened. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Projecting staple crop production including wheat under future climate plays a fundamental role in planning the required adaptation and mitigation strategies for climate change effects especially in developing countries. The main aim of this study was to investigate the direction and magnitude of climate change impacts on grain yield of rainfed wheat (Triticum aestivum L.) production and precipitation within growing season. This study was performed for various regions in Khorasan province which is located in northeast of Iran. Climate projections of two General Circulation Models (GCM) for four locations under three climate change scenarios were employed in this study for different future time periods. A stochastic weather generator (LARS-WG5) was used for downscaling to generate daily climate parameters from GCMs output. The Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 was employed to evaluate rainfed wheat performance under future climate. Grain yield of rainfed wheat and precipitation during growth period considerably decreased under different scenarios in various time periods in contrast to baseline. Highest grain yield and precipitation during growth period was obtained under B1 scenario but A1B and A2 scenarios resulted in sharp decrease (by ?57 %) of grain yield. Climate change did not have marked effects on evapotranspiration during the rainfed wheat growth. A significant correlation was detected between grain yield, precipitation and evapotranspiration under climate change for both GCMs and under all study scenarios. It was concluded, that rainfed wheat production may decline during the next 80 years especially under A2 scenario. Therefore, planning the comprehensive adaptation and mitigation program is necessary for avoiding climate change negative impact on rainfed wheat production.  相似文献   

19.
Prediction of future forest carbon (C) stocks as influenced by forest management and climate is a crucial issue in the search for strategies to mitigate and adapt to global change. It is hard to quantify the long-term effect of specific forest practices on C stocks due to the high number of processes affected by forest management. This work aims to quantify how forest management impacts C stocks in Mediterranean mountain forests based on 25 combinations of site index, tree species composition and thinning intensity in three different climate scenarios using the CO2Fix v.3.2 model Masera et al. (Ecol Modell 164:177–199, 2003). The study area is an ecotonal zone located in Central Spain, and the tree species are Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.). Our results show a strong effect of tree species composition and a negligible effect of thinning intensity. Mixed stands have the highest total stand C stocks: 100 % and 15 % more than pure oak and pine stands respectively, and are here suggested as a feasible and effective mitigation option. Climate change induced a net C loss compared to control scenarios, when reduction in tree growth is taken into account. Mixed stands showed the lowest reduction in forest C stocks due to climate change, indicating that mixed stands are also a valid adaptation strategy. Thus converting from pure to mixed forests would enhance C sequestration under both current and future climate conditions.  相似文献   

20.
The within-species diversity in response to weather and the gaps in the response diversity in the modern set of forage crop cultivars were determined using an approach that assessed the adaptive capacity under global climate change. The annual dry matter (DM) yields were recorded in multi-location MTT (Maa- ja elintarviketalouden tutkimuskeskus) Agrifood Research Official Variety Trials in Finland for modern forage crop cultivars from 2000 to 2012, as a response to agroclimatic variables critical to yield based on the year-round weather data. The effect and interaction of cultivars and agroclimatic variables were analysed using mixed model. The relatively low adaptive capacity of timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) indicates that diversification of the breeding material is warranted, particularly for resistance to high temperatures during primary growth and to high temperature sum 7 days after the first cut. All red clover cultivars (Trifolium pratense L.) suffered from both low and high accumulation of warm winter temperatures. Except for the red clover cultivars, cold stress during winter and lack of warm winter temperatures consistently reduced the yields of all species and cultivars. All tall fescue (Festuca arundinacea Schreb.) cultivars suffered from low precipitation during the fall hardening period. Although the set of festulolium (Festulolium pabulare) cultivars was also sensitive to low precipitation during the fall, festulolium was a good example of enhanced capacity to adapt to climate change with high response diversity because the cultivar germplasm base was diversified. Foreign origin in a cultivar pool was apparently not sufficient or necessary to ensure added value for a diversity of responses to climate change. Similar analyses to those used in this study, applied as practical tools for breeders, farmers and public actors, are important to secure the adaptive capacity of crops worldwide under global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号