首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As users of indoor climbing gyms are exposed to high concentrations (PM(10) up to 4000 μg m(-3); PM(2.5) up to 500 μg m(-3)) of hydrated magnesium carbonate hydroxide (magnesia alba), reduction strategies have to be developed. In the present paper, the influence of the use of different kinds of magnesia alba on dust concentrations is investigated. Mass concentrations, number concentrations and size distributions of particles in indoor climbing gyms were determined with an optical particle counter, a synchronized, hybrid ambient real-time particulate monitor and an electrical aerosol spectrometer. PM(10) obtained with these three different techniques generally agreed within 25%. Seven different situations of magnesia alba usage were studied under controlled climbing activities. The use of a suspension of magnesia alba in ethanol (liquid chalk) leads to similar low mass concentrations as the prohibition of magnesia alba. Thus, liquid chalk appears to be a low-budget option to reduce dust concentrations. Magnesia alba pressed into blocks, used as powder or sieved to 2-4 mm diameter, does not lead to significant reduction of the dust concentrations. The same is true for chalk balls (powder enclosed in a sack of porous mesh material). The promotion of this kind of magnesia alba as a means of exposure reduction (as seen in many climbing gyms) is not supported by our results. Particle number concentrations are not influenced by the different kinds of magnesia alba used. The particle size distributions show that the use of magnesia alba predominantly leads to emission of particles with diameters above 1 μm.  相似文献   

2.
Mass size distributions of total suspended particulate matter (TSPM) was measured from Sep 2002 to April 2003 in indoor kitchen environments of five locations in Jawaharlal Nehru University (JNU), New Delhi, with the help of a high volume cascade impactor. Particulate matters were separated in five different size ranges, i.e. >10.9 microm, 10.9-5.4 microm, 5.4-1.6 microm, 1.6-0.7 microm and <0.7 microm. The particle size distribution at various sites appears to follow uni-modal trend corresponding to fine particles i.e. size range <0.7 microm. The contributions of fine particles are estimated to be approximately 50% of TSPM and PM10.9, while PM10.9 comprises 80% of TSPM. Good correlations were observed between various size fractions. Regression results reveal that TSPM can adequately act as a surrogate for PM10.9 and fine particles, while PM10.9 can also act as surrogate for fine particles. The concentrations of heavy metals are found to be dominantly associated with fine particles. However, the concentration of some metals and their size distribution, to some extent is also site specific (fuel type used).  相似文献   

3.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:36,自引:12,他引:24  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   

4.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

5.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

6.
Springtime urban road dust forms one of the most serious problems regarding air pollution in Finland. The composition and origin of springtime dust was studied in southern Finland with two different methods. Suspended particles (PM10 and TSP) were collected with high volume particle samplers and particle deposition was collected with moss bags. The composition of the PM(1.5-10) fraction was studied using individual particle analysis with SEM/EDX. The deposition in the moss bags was analysed with ICP-MS. The results showed that during the study period, approximately 10% of both PM(1.5-10) particles and the deposition originated from sanding. Other sources in the springtime PM(1.5-10) were e.g. asphalt aggregate or soil and combustion processes. It can be concluded that sanding produced a relatively small amount of particulate matter under the investigated circumstances.  相似文献   

7.
15 road and 14 soil dust samples were collected from an oilfield city, Dongying, from 11/2009-4/2010 and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) for V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb within PM(2.5), PM(10) and PM(100) fractions synchronously. Metal concentrations, sources and human health risk were studied. Results showed that both soil and road dust exhibited higher values for Mn and Zn and lower values for Co and Cd for the three fractions. Mass concentration ratios of PM(2.5)/PM(10) and PM(10)/PM(100) for metals in road and soil dust indicate that most of the heavy metals tend to concentrate in fine particles. Geoaccumulation index and enrichment factors analysis showed that Cu, Zn and Cd exhibited moderate or heavy contamination and significant enrichment, indicating the influence of anthropogenic sources. Vanadium, Cr, Mn and Co were mostly not enriched and were mainly influenced by crustal sources. For Ni, As and Pb, they ranged from not enriched to moderately enriched and were influenced by both crustal materials and anthropogenic sources. The conclusions were confirmed by multivariate analysis methods. Principle component analysis revealed that the major sources were vehicle emission, industrial activities, coal combustion, agricultural activities and crustal materials. The risk assessment results indicated that metal ingestion appeared to be the main exposure route followed by dermal contact. The most likely cause for cancer and other health risks are both the fine particles of soil and road dusts.  相似文献   

8.
APM was collected and trace elements existing in the particles were monitored since May 1995 in this study. APM sample was collected separately by size (d < 2 microm, 2-11 microm and >11 microm) on the roof of the university building (45 m above ground) in the campus of Faculty of Science and Engineering, Chuo University, Tokyo, Japan, using an Anderson low volume air sampler. The collected sample was digested by HNO3, H2O2 and HF using a microwave oven, and major elements (Na, Mg, Al, K, Ca and Fe) were measured by ICP-AES, and trace elements (Li, Be, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba and Pb) were measured by ICP-MS. It was observed that the APM concentration was higher between the winter and the spring, compared to during the summer. The enrichment factor was calculated for each element in each set of APM (d < 2 microm, 2-11 microm and >11 microm). Seasonal trends of enrichment factors were examined, and the elements were classified into 3 groups according to the common seasonal behavior. It is likely that the elements in the same group have common origins. Toxic pollutant elements (Sb, Se, Cd, Pb and As) were found in small particles with d of <2 microm in concentrated levels. Antimony (Sb) had the highest enrichment factor, and the results suggested that Sb level in APM was extremely high. The origins of Sb were sought, and wastes from plastic incineration and brake pad wears of automobiles were suspected. Each set of APM (d < 2 microm, 2-11 microm and >11 microm) was classified by the shape, and the shape-dependent constituents of a single APM particle were quantitatively measured by SEM-EDX. High concentration of Sb was found in APM <2 microm and square particles. Particles less than 2 microm and square shaped particles were major particles produced by actual car braking experiments. From these experimental results it was concluded that the source of Sb in squared APM <2 microm is considered to be from brake pad wear.  相似文献   

9.
The potential use of dust particles trapped on Scots pine needles for tracking dust migration around flotation tailings ponds in the Silesian-Krakowian ore district, Southern Poland was tested. 1-, 2- and 3-years old needles were studied using a scanning electron microscope and energy dispersive X-ray microanalysis. Particle sizes and morphologies, and the nature of the compounds hosting metals ions, were examined. A large majority of the particles examined are <10 microm in size. Almost 80% of particles represent respirable dust. All the components in the flotation wastes appear among the chemical compounds identified in particles on the pine needles. The quantity of the waste particles decreases with distance from the flotation tailings ponds. The analysis of dust particles on pine needles could be a useful method for estimating vectors and travel distances of suspended dust migrating around open flotation tailings ponds and around other point sources emitting dust particles with chemical compositions differing from the environmental background.  相似文献   

10.
宁波和温州地区夏季大气中不同粒径颗粒物特征分析   总被引:1,自引:0,他引:1  
对宁波地区北仑和奉化站、温州地区乐清站3个监测点夏季TSP、PM10、PM2.5和PM1.0进行监测,测试分析各种粒径颗粒物浓度水平和粒径分布特征,并通过化学质量平衡(CMB)受体模型对颗粒物进行源解析。监测结果显示,夏季宁波、温州地区TSP和PM10日均浓度为0.049~0.134mg/m3和0.025~0.084mg/m3,均未超过我国环境空气质量二级标准;PM2.5日均浓度为0.007~0.069mg/m3,按美国2006年EPA最新标准限值0.035mg/m3衡量,奉化、乐清、北仑站的超标天数占总监测天数的比例分别为75%、40%和37.5%。粒径分布统计结果显示,3个监测站点PM10占TSP的比例为48.78%~86.96%;PM2.5占TSP的比例为33.33%~72.46%;奉化和乐清监测点PM10中PM2.5和PM1.0的比例平均值在50%以上。源解析结果显示,夏季TSP主要来源于土壤尘,其次是建筑尘和煤烟尘,其贡献率分别为40.70%~55.49%、9.62%~13.64%和5.85%~17.28%。  相似文献   

11.
Because of the recent frequent observations of major dust storms in southwestern cities in Iran such as Ahvaz, and the importance of the ionic composition of particulate matters regarding their health effects, source apportionment, etc., the present work was conducted aiming at characterizing the ionic composition of total suspended particles (TSP) and particles on the order of ~10?μm or less (PM(10)) during dust storms in Ahvaz in April-September 2010. TSP and PM(10) samples were collected and their ionic compositions were determined using an ion chromatography. Mean concentrations of TSP and PM(10) were 1,481.5 and 1,072.9?μg/m(3), respectively. Particle concentrations during the Middle Eastern Dust (MED) days were up to four times higher than those in normal days. Ionic components contributed to only 9.5% and 11.3% of the total mass of TSP and PM(10), respectively. Crustal ions were most abundant during dust days, while secondary ions were dominant during non-dust days. Ca(2+)/Na(+) and Cl(-)/Na(+) ratios can be considered as the indicators for identification of the MED occurrence. It was found that possible chemical forms of NaCl, (NH(4))(2)SO(4), KCl, K(2)SO(4), CaCl(2), Ca(NO(3))(2), and CaSO(4) may exist in TSP. Correlation between the anionic and cationic components suggests slight anion and cation deficiencies in TSP and PM(10) samples, though the deficiencies were negligible.  相似文献   

12.
Source apportionment study was performed, applying principal component analysis to the results of 221 chemical analyses of PM10 and PM2.5 samples collected daily from the industrial (but low traffic) Spanish town of Puertollano over a 14-month period during 2004-2005. Results reveal compositional variations attributable to different mixtures of natural and anthropogenic materials, mainly soil and rock dust (crustal), marine salt (only in PM10), petrochemical refinery emissions, and particles attributed to the combustion of local coal, which is unusually rich in Pb and Sb. During the study period there were 34 pollution episodes when PM10 exceeded 50 tg m(-3), mostly due to winter air temperature inversions, regional atmospheric stagnation, or African dust incursions (North African, NAF days: usually in summer). Whereas the crustal component during NAF episodes averaged 52% with a PM2.5/PM10 ratio of 0.54, this dropped to 29% and a PM2.5/PM10 of 0.67 during non-NAF days when anthropogenic materials predominated. Abnormally enhanced concentrations of pathfinder metallic trace elements provide additional evidence for source apportionment: thus aerosols with raised levels of Pb and Sb are associated with local coal combustion, Ni and V can be linked to petrochemical PM emissions, and Ti, Mn, Rb, and Ce are particularly characteristic of crustal dust incursions.  相似文献   

13.
青岛市区春夏季大气能见度与颗粒物的关系   总被引:8,自引:0,他引:8  
利用青岛市灰霾综合观测站2012年3月2日-2012年6月7日期间的监测数据,分析了青岛市区大气能见度与不同粒径颗粒物质量浓度的日变化特征,比较了各级别大气能见度下不同粒径颗粒物质量浓度及所占比例的相关性,研究了相对湿度对大气能见度和颗粒物质量浓度相关性的影响.结果表明,监测时段大气能见度与颗粒物质量浓度呈现较好的负相关,每天大气能见度最低值出现在早晨07:00--09:00;剔除相对湿度高于90%的前提下,PM2.5是影响大气能见度的主要因子,随着其在PM1o中所占比例上升,大气能见度级别不断下降,相关系数为-0.84;不同相对湿度区间下,PM2.5对大气能见度的影响最明显,其中,相对湿度为60% ~ 70%,大气能见度与颗粒物质量浓度之间的相关性最好.  相似文献   

14.
库尔勒市大气颗粒物污染特征与影响因素分析   总被引:1,自引:0,他引:1  
针对库尔勒市PM 10、PM 2.5年均浓度超标现象,基于市区3个环境监测站2013—2017年的逐时观测数据,分析PM 10、PM 2.5污染特征、成因及其主要影响因素。结果表明:①2013—2017年库尔勒市PM 10年均浓度变化较大且无明显趋势,PM 2.5年均浓度整体呈下降趋势;②季节尺度上,库尔勒市PM 10在每年2—5月呈现高浓度,PM 2.5高浓度期则为10月至翌年5月;③城郊的开发区站PM 10浓度最高,老城区的州政府站PM 2.5浓度最高,在PM 10和PM 2.5的高浓度期空间差异尤其显著;④PM 10与风速显著正相关,来自塔克拉玛干沙漠的风蚀沙尘颗粒物是库尔勒地区颗粒污染物的主要来源;⑤库尔勒市PM 10主要为外源输入,PM 2.5则以城市内源为主,相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。  相似文献   

15.
Tree barks and attic dusts were examined as historical archives of smelter emissions, with the aim of elucidating the pathways of pollution associated with a plume of Sn and Pb contamination in top soils, found close to the former Capper Pass smelter, Humberside, UK. Samples were collected from three villages within the area of the contamination plume. Scanning electron microscopy (SEM) and bulk chemical analyses were used to assess particle type, number and deposition patterns. SEM analysis of dusts and bark revealed that Sn and Pb particles were present in samples from all three villages along with copper, zinc and iron particles. These were almost entirely <10 microm in diameter and occurred mostly as oxides, frequently forming clusters of sub-micron crystals. Samples further from the smelter contained considerably fewer particles. We present images of smelter derived Sn particles. Chemical assays of the barks and attic dusts demonstrated that concentrations of Sn, Pb, Cu, As, Sb and Cd diminished with increasing distance from the source. Strong positive correlations were found between Sn and Pb, As, Sb and Cd in the attic dusts. Enrichment factors (EF) were calculated for these trace elements based on topsoil element concentrations obtained from the soil survey of the study area. Decreases in these trace element concentrations and EF values with distance away from the smelter are consistent with trends found in the soil survey for Sn and Pb and are typical of deposition patterns around smelter stacks. The study demonstrates that tree bark and attic dusts can be effective archives of metal particulates deposited from large static emission sources.  相似文献   

16.
近年来,空气污染已成为长三角地区最关键的环境问题之一,气溶胶颗粒物(PM)是最主要的污染物之一.生物气溶胶作为颗粒物的重要组成部分,可能对空气质量和人体健康产生不利影响.利用高通量测序方法研究了江苏省泰州2019年11月至2020年1月期间发生沙尘和霾污染时生物气溶胶中细菌群落结构组成特征.结果表明:冬季沙尘天和霾天气...  相似文献   

17.
The size distribution of aerosols was measured near traffic intersections of Marol link road in air quality control region (AQCR1), which is a moderately industrial area and Dadar Khodad circle in AQCR2, which is a heavily commercial core of the Mumbai City. The reason behind selecting the two unidentical regions was to study the contribution from vehicles to the size separated PM10 and that of Pb. It is recognised that particulates in urban air are responsible for serious health effects. As very small particles are assumed to be important for the adverse health effects, the particle size distribution is thus an important factor that needs to be addressed whenever the particulates pollution is concerned. The size measurements were done with a cascade impactor of eight stages with a back-up filter. It effectively separates the particulate matter into nine-sizes ranging from 0.0-0.4 to 9.0-10.0 microm. Samples were analysed in nine-particle size fractions with special reference to a toxic metal - lead (Pb) by atomic absorption spectrophotometry (AAS). It was found that PM10 and Pb at both the intersections could easily be classified by the size distribution. The fractions of the PM10 and that of Pb showing a tendency of trimodal distributions with the first peak at coarse mode approximately 9.0-10.0 microm, second at approximately 5.8 microm and the third at coarse mode approximately1.1 microm. The significant percentage of Pb was found in the range below 2.5 microm at both the intersections. However, Pb in AQCR1 is found in the coarser range as well, which could probably be the influence of various industrial activities in the area. PM10 concentration values in the coarser range in AQCR2 are associated with the resuspension of dust particles and mechanical erosions.  相似文献   

18.
Surface coal mining creates more air pollution problems with respect to dust than underground mining . An investigation was conducted to evaluate the characteristics of the airborne dust created by surface coal mining in the Jharia Coalfield. Work zone air quality monitoring was conducted at six locations, and ambient air quality monitoring was conducted at five locations, for a period of 1 year. Total suspended particulate matter (TSP) concentration was found to be as high as 3,723 μg/m3, respirable particulate matter (PM10) 780 μg/m3, and benzene soluble matter was up to 32% in TSP in work zone air. In ambient air, the average maximum level of TSP was 837 μg/m3, PM10 170 μg/m3 and benzene soluble matter was up to 30%. Particle size analysis of TSP revealed that they were more respirable in nature and the median diameter was around 20 μm. Work zone air was found to have higher levels of TSP, PM10 and benzene soluble materials than ambient air. Variations in weight percentages for different size particles are discussed on the basis of mining activities. Anionic concentration in TSP was also determined. This paper concludes that more stringent air quality standards should be adopted for coal mining areas and due consideration should be given on particle size distribution of the air-borne dust while designing control equipment.  相似文献   

19.
Endotoxin is a toxic, pro-inflammatory compound that has been detected in indoor air and dust in homes and occupational settings, and also in outdoor air. Data on the outdoor sampling of endotoxin are limited. Currently, little is known about the seasonal variation and influence of temperature on outdoor endotoxin levels. In the present study, we report endotoxin levels in fine fraction particulate matter with a 50% aerodynamic cutoff diameter of 2.5 microm (PM2.5) and describe the seasonal variation of endotoxin in Munich, Germany. In 1999-2000, PM2.5 was collected at forty outdoor monitoring sites across Munich. Approximately four samples were collected at each site for a total of 158 samples. Endotoxin concentrations in the PM2.5 samples were determined using the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. The geometric mean endotoxin concentration was 1.07 EU mg PM2.5(-1) (95% C.I.: 0.915-1.251) or 0.015 EU m(-3) of sampled air (95% C.I.: 0.013-0.018). Munich endotoxin levels were significantly related to ambient temperature (p < 0.0001) and percent relative humidity (p < 0.0001). Sampling periods with higher average temperatures yielded higher levels of endotoxin in PM2.5 (r = 0.641), whereas decreases in percent relative humidity were associated with increased endotoxin levels in PM2.5 (r = -0.388). Endotoxin levels were significantly higher during the warmer seasons of spring [means ratio (MR): 2.5-2.7] and summer (MR: 2.1-3.0) than during winter. Although temperature and relative humidity do not explain all of the variability in endotoxin levels, their effects were significant in our data set. Temperature effects and seasonal variation of endotoxin should be considered in future studies of outdoor endotoxin.  相似文献   

20.
In this study, ambient TSP, PM10, and PM2.5 in a residential area located in the northern part of Seoul were monitored every other month for 1 year from April 2005 to February 2006. The monthly average levels of TSP, PM10, and PM2.5 had ranges of 71∼158, 40∼106, and 28∼43 μg/m3, respectively. TSP and PM10 showed highest concentration in April; this seems to be due to Asian dust from China and/or Mongolia. However, the fine particle of PM2.5 showed a relatively constant level during the monitoring period. Heavy metals in PM 10 and PM2.5, such as Cr, As, Cd, Mn, Zn and Pb, were also analysed during the same period. The monthly average concentrations of heavy metal in PM2.5 were Cr:1.9∼22.7 ng/m3; As:0.9∼2.5 ng/m3; Cd: 0.6∼7 ng/m3; Mn:6.1∼22.6 ng/m3; Zn: 38.9∼204.8 ng/m3, and Pb: 21.6∼201.1 ng/m3. For the health risk assessment of heavy metals in ambient particles, excess cancer risks were calculated using IRIS unit risk. As a result, the excess cancer risks of chromium, cadmium, and arsenic were shown to be more than one per million based on the annual concentration of heavy metals, and chromium showed the highest excess cancer risk in ambient particles in Seoul.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号