首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Nutrient concentrations were measured in the lagoon and surrounding oceanic waters of Tikehau Atoll (Tuamotu Archipelago, French Polynesia) from 1984 to 1987. The atoll-mass effect alters the nutrient profiles: turbulent vertical mixing of the waters along the deeper slopes of the atoll induces nitrogen and phosphorus enrichment of the surface layer. Nutrient concentrations varied with year and month of sampling; except for ammonium, inorganic nutrient levels were lower inside the lagoon than in the surrounding oceanic waters. Nitrogen, phosphorus and silica budgets were calculated by mean differences in nutrient concentrations recorded between lagoon and oceanic surface waters and by the waterexchange rate through the passage linking the lagoon and oceanic waters and the reef-flat spillways. Particulate and dissolved organic nitrogen and ammonium are exported from the lagoon to the open ocean through the westward passage. The nitrogen budget is not balanced by the nitrate input from oceanic waters and the organic nitrogen and ammonium output from lagoonal waters. Nitrogen fixation would appear to constitute another source of nitrogen for lagoonal waters. The phosphorus budget is largely balanced by phosphate input from the oceanic waters and organic phosphorus output from the lagoon waters. The oceanic waters became impoverished in silicate during their crossing of the atoll reef edge and their residence in the lagoon. The atoll constitutes a source of nitrogen for the surrounding oceanic waters.  相似文献   

2.
为探究奶牛粪便翻堆式与槽式堆肥过程中温室气体和氨气(NH3)排放规律及养分损失情况,采用原位监测的方法,通过静态采气箱和气体在线监测设备,分别对奶牛粪便翻堆式和槽式堆体开展为期36 d的气体监测。结果表明,翻堆式堆肥过程中甲烷(CH4)、氧化亚氮(N2O)和NH3排放主要集中于翻堆阶段;槽式堆肥过程中CH4和NH3排放主要集中于堆肥前期,N2O排放则主要集中于堆肥中后期。堆体管理措施及物料特性显著影响堆肥气体的排放。翻堆式堆肥过程中翻堆对气体排放的影响大于堆肥理化因子如温度、含水率以及pH值;而槽式堆肥过程中,降低堆体的平均温度可同时减缓堆肥过程中CH4、二氧化碳(CO2)和NH3的释放。从养分损失来看,翻堆式和槽式堆肥过程中碳素总损失量分别占堆肥物料初始总碳含量(TC)的27.16%和21.53%,其中约80%以上的碳素损失来自CO2-C。而堆肥过程中氮素总损失量分别占堆肥物料初始总氮含量(TN)的18.67%和13.44%,其中约80%以上的氮素损失来源于NH3N。该研究表明,在保证堆体物料腐熟的前提下,降低翻堆频率可显著减缓翻堆式堆肥过程中温室气体和NH3的排放;降低槽式堆肥堆体的温度可显著减少堆肥过程中CH4、CO2和NH3的排放。该研究结果对于减少堆肥过程气态污染物排放和养分损失,提高堆肥效率具有重要的指导意义。  相似文献   

3.
The study area, Kuttanad Waters is a part of the Cochin estuarine system on the west coast of India. Kuttanad is well known for its agricultural activity and so the major contribution to the inorganic ions of nitrogen will be from fertilisers applied in agriculture. Based on observed salinity the stations have been divided into three zones. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. The chemical speciation scheme applied here distinguishes three forms of ammoniacal nitrogen species: exchangeable, fixed, and organic ammoniacal nitrogen. No significant trends were observed in the seasonal distribution of total, exchangeable, fixed and organic nitrogen. A significant concentration of exchangeable ammonia was observed in the sediment due to their predominantly reducing environment, which restricts nitrification. High NH4-N concentrations in the pore waters, along with the sedimentary composition leads to a significantly high quantity of fixed NH4-N. The low values for N org is due to high mineralisation or deamination of organic nitrogen  相似文献   

4.
Nitrogen export from an agriculture watershed in the Taihu Lake area, China   总被引:13,自引:0,他引:13  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8-43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO(3-)-N + NH4+-N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

5.
The nutrient distribution of the Cochin Backwater was studied at 6 stations throughout the year. The depth profiles of phosphorus (inorganic and organic), nitrogen (nitrate and nitrite) and silicon, showed a marked seasonal rhythm, induced by the local precipitation and land runoff. Changes in other environmental features such as temperature, salinity, dissolved oxygen, pH and alkalinity were small during the premonsoon period when the system remains marine-dominated, and large during the monsoon period when the estuary becomes freshwater-dominated. Seasonal changes in the hydrographical conditions of the adjoining coastal waters of the Arabian Sea which influence the backwater system have been discussed.  相似文献   

6.
Nitrogen Export from an Agriculture Watershed in the Taihu Lake Area, China   总被引:6,自引:0,他引:6  
Temporal changes in nitrogen concentrations and stream discharge, as well as sediment and nitrogen losses from erosion plots with different land uses, were studied in an agricultural watershed in the Taihu Lake area in eastern China. The highest overland runoff loads and nitrogen losses were measured under the upland at a convergent footslope. Much higher runoff, sediment and nitrogen losses were observed under upland cropping and vegetable fields than that under chestnut orchard and bamboo forest. Sediment associated nitrogen losses accounted for 8–43.5% of total nitrogen export via overland runoff. N lost in dissolved inorganic nitrogen forms (NO 3 -N + NH 4 + -N) accounted for less than 50% of total water associated nitrogen export. Agricultural practices and weather-driven fluctuation in discharge were main reasons for the temporal variations in nutrient losses via stream discharge. Significant correlation between the total nitrogen concentration and stream discharge load was observed. Simple regression models could give satisfactory results for prediction of the total nitrogen concentrations in stream water and can be used for better quantifying nitrogen losses from arable land. Nitrogen losses from the studied watershed via stream discharge during rice season in the year 2002 were estimated to be 10.5 kg N/ha using these simple models.  相似文献   

7.
The effects of nitrate additions on the physics, chemistry and biology of lake water were studied in 5 × 10 m polyethylene enclosures installed in Lake Kastoria, a shallow eutrophic lake in Northern Greece. The water physics, chemistry, chlorophyll a and nitrogenase activity were monitored from July 10 till October 17 1985 at 2 week intervals. The experiment included a control enclosure.

Water confinement in the control enclosure resulted in ammonia accumulation, a slight decrease in chlorophyll a, a significant reduction of nitrogenase activity and an increase in phosphorus release from the sediments at the end of the experimental period.

The addition of KNO3 resulted in higher than the control accumulation of NH3, chlorophyll reduction, increase in water transparency and reduction of nitrogenase activity. Large losses of nitrogen added were measured which were attributed to denitrification, organic matter sedimentation and ammonia volatilization. Anaerobic but not aerobic phosphorus release from sediments was inhibited at the end of the period. The reduction of nitrogenase activity and of chlorophyll a concentration are attributed to changes in phytoplankton composition from blue-greens to small-sized species grazed by zooplankters.  相似文献   

8.
Watershed land use effects on lake water quality in Denmark   总被引:5,自引:0,他引:5  
Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality.  相似文献   

9.
Batch experiments were conducted to study the short-term biological effects of rare earth ions (La3+, Ce3+) and their mixture on the nitrogen removal in a sequencing batch reactor (SBR). The data showed that higher NH+4―N removal rate, total inorganic nitrogen removal efficiency, and denitrification efficiency were achieved at lower concentrations of rare earth elements (REEs) (<1mg/L). In the first hour of the aeration stage of SBR, the presence of REEs increased the total inorganic nitrogen removal efficiency and NH+4―N removal efficiency by 15.7% and 10%―15%, respectively. When the concentrations of REEs were higher than 1mg/L, the total inorganic nitrogen removal efficiency decreased, and nitrate was found to accumulate in the effluent. When the concentrations of REEs was up to 50.0mg/L, the total inorganic nitrogen removal efficiency was less than 30% of the control efficiency with a high level of nitrate. Lower concentrations of REEs were found to accelerate the nitrogen conversion and removal in SBR.  相似文献   

10.
Diffusive fluxes of elements (NO-2, NO-3, NH+4, SiO2, PO3-4, Cl-, SO2-4, Fe, Mn) have been measured by applying the Fick's first law in two stations of the Tigullio Gulf: the first one characterized by sandy sediments rich in vegetal detritus and the second one, located to within the tourist harbour, characterized by a silty-clay sediments.

Benthic fluxes were measured only in the second station by means of benthic chamber experiments. Although the significant presence of dissolved oxygen in the surface sediments, and the evidence of processes usually occurring in oxidised sediments such as nitrification, both stations also presented characteristics of anoxic sediments such as high oxygen consumption rate and high pore water concentrations of ion, manganese and N-ammonia and reactive orthophosphate.

In both stations, sediments seemed to represent a potential source for most of the chemical species studied, although fluxes were not confirmed for ion, manganese and reactive orthophosphate in benthic chamber experiments.

Diffusive fluxes presented a general agreement for both stations, with higher fluxes of N-nitrate and N-nitrite at the first station were oxidative processes of N-ammonia in the upper layer of the sediments seemed to be more active. the comparison between diffusive and benthic fluxes showed a possible contribution of bioturbation.  相似文献   

11.
湖泊水体氮、磷形态分布特征及其与藻类生长的关系是湖泊富营养化研究的重要方面。采用GPS定位,在程海湖设置了3个断面9个采样点,研究了氮、磷形态分布特征,并分析了各形态氮磷与叶绿素a的相关性。结果表明:总氮(TN)质量浓度为0.773 mg.L-1,总磷(TP)质量浓度为0.046 mg.L-1,叶绿素a质量浓度为0.024 mg.L-1。氮素的赋存形态特征是以溶解态总氮(DTN)占大部分,DTN中又以溶解态有机氮(DON)占绝大部分;磷素的存在特点是溶解态无机磷(DIP)含量比重较大。各形态氮、磷都有明显的季节性波动但区域性差异不明显,叶绿素a则有明显的季节节律和时空差异。叶绿素a很好地响应了总氮(TN)、总磷(TP)、溶解态总氮(DTN)、溶解态总磷(DTP)、颗粒态总氮(PTN)、颗粒态总磷(PTP)的变化。程海富营养化受氮和磷共同限制,控制富营养化必须同时削减氮和磷。  相似文献   

12.
Despite the fact that coccolithophorids such as Emiliania huxleyi are suspected to play an important role in carbon-cycling, there are few data from which to deduce how these organisms may respond to CO2-induced global warming. the nitrogen and phosphorus nutrient physiology of these organisms, together with its interaction with photosynthesis, needs to be studied especially in connection with the selection for coccolith forming individuals and the quantity and quality of the CaCO3 deposited in the coccoliths. Without such data, it will not be possible to model the contributions that these microalgae may play in arresting the increase in levels of atmospheric CO2.  相似文献   

13.
The effects of biological processes on dissolved inorganic nutrients, dissolved organic nitrogen (DON) and phosphorus (DOP) are considered in the north western Adriatic Sea. The budgets of these nutrients, which represent the sum of production and consumption processes in comparison to advection, are discussed with regard to dissolved inorganic nitrogen ( 15 N labelled) uptake, which basically indicates the biological demand of this fraction of nitrogen by phytoplankton community. The presented data show that, although important, the continental input of dissolved inorganic nitrogen (DIN), mainly nitrate, is utilised and recycled within the coastal marine environment (budget of m 15 r µmol-N·dm m 3 ). In fact, during four cruises (June, 1996; February, 1997; June, 1997; February, 1998), phytoplankton production was mainly driven by regenerated nutrients ( f h 0.4). Regarding dissolved inorganic phosphorus (DIP), the negative budgets observed in most cases (down to m 0.4 r µmol-P·dm m 3 ) confirm, above all, its scarce availability in this basin. Recycling processes rather than continental inputs regulate the availability of this nutrient. In addition, the comparison between DIN and DIP budgets indicates that, in this ecosystem, dissolved inorganic phosphorus is recycled faster than nitrogen through the living particulate and dissolved organic pools. As a consequence of biological activities, a strong production of dissolved organic nitrogen (DON) can occur in summer (up to +22 r µmol-N·dm m 3 ) while DOP shows a more independent behaviour both with respect to its accumulation in the environment and to the observed nitrogen variations.  相似文献   

14.
S. T. Larned 《Marine Biology》1998,132(3):409-421
Recent investigations of nutrient-limited productivity in coral reef macroalgae have led to the conclusion that phosphorus, rather than nitrogen, is the primary limiting nutrient. In this study, comparison of the dissolved inorganic nitrogen:phosphorus ratio in the water column of Kaneohe Bay, Hawaii, with tissue nitrogen:phosphorus ratios in macroalgae from Kaneohe Bay suggested that nitrogen, rather than phosphorus, generally limits productivity in this system. Results of nutrient-enrichment experiments in a flow-through culture system indicated that inorganic nitrogen limited the growth rates of 8 out of 9 macroalgae species tested. In 6 of the species tested, specific growth rates of thalli cultured in unenriched seawater from the Kaneohe Bay water column were zero or negative after 12 d. These results suggest that, in order to persist in low-nutrient coral reef systems, some macroalgae require high rates of nutrient advection or access to benthic nutrient sources in addition to nutrients in the overlying water column. Nutrient concentrations in water samples collected from the microenvironments inhabited or created by macroalgae were compared to nutrient concentrations in the overlying water column. On protected reef flats, inorganic nitrogen concentrations within dense mats of Gracilaria salicornia and Kappaphycus alvarezii, and inorganic nitrogen and phosphate concentrations in sediment porewater near the rhizophytic algae Caulerpa racemosa and C. sertularioides were significantly higher than in the water column. The sediments associated with these mat-forming and rhizophytic species appear to function as localized nutrient sources, making sustained growth possible despite the oligotrophic water column. In wave-exposed habitats such as the Kaneohe Bay Barrier Reef flat, water motion is higher than at protected sites, sediment nutrient concentrations are low, and zones of high nutrient concentrations do not develop near or beneath macroalgae, including dense Sargassum echinocarpum canopies. Under these conditions, macroalgae evidently depend on rapid advection of low-nutrient water from the water column, rather than benthic nutrient sources, to sustain growth. Received: 1 December 1997 / Accepted: 9 July 1998  相似文献   

15.
Modern agricultural practices have been strongly linked with increased NO3-N loadings in surface waters. Nitrate leaching increases as land use progresses from forest and moorland through grassland, to arable agriculture. There are, within the UK, few studies on a regional scale capable of displaying a relationship between land cover (agricultural intensity) and water quality. This relationship can be investigated using computer manipulation of spatial geographic information together with conventional river and agricultural census data.

Simple regression analysis against primary land cover suggests that agriculture is reponsible for annual losses of nitrate in North East Scotland river catchments. Further multi-linear regression analysis, using the GIS data and agricultural census returns indicate that most of the outstanding variation can be accounted for if the agricultural variable is related to agricultural practice, such as spring, winter and grass cropping.  相似文献   

16.
• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding. • Discontinuity and trophic interactions were observed along the dam-fragmented river. • C, N and P cycles are driven by top-down and bottom-up forces of microbial food web. • Pelagic-benthic coupling may intensify nutrient accumulation in the river system. Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator–prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.  相似文献   

17.
The influence of different plant and soil processes on the concentrations of soluble organic forms of carbon, nitrogen, phosphorus and sulphur in soil and drainage waters is reviewed. Current knowledge about soluble organic matter is restricted mainly to dissolved organic carbon. Comparable information about soluble organic nitrogen, phosphorus and sulphur in processes such as eutrophication, plant uptake and decomposition is limited. Data are presented to highlight the potential sources of soluble organic components together with a discussion of their likely fate within the soil profile. the implications of changes in land use and management practices on dissolved organic matter are discussed.  相似文献   

18.
以巢湖典型低丘山区坡地的6种主要土地利用类型(弃耕地、尾矿裸地、灌木林地、荒草地、马尾松林地和人工恢复林地)为研究对象,通过定位观测与收集坡面壤中流,探讨该地区壤中流养分流失动态变化特征。结果表明,巢湖低丘山区典型土地利用类型壤中流发生概率为灌木林地和荒草地较高,尾矿裸地最低(仅在0~20cm土层产生);表层壤中流氮含量为尾矿裸地最高,人工恢复林地最低,壤中流磷含量为弃耕地最高,尾矿裸地最低;壤中流氮素流失以溶解态NO3-N为主,并随雨季的到来而呈下降趋势,随土层加深呈先下降后升高趋势;磷主要以有机溶解态形式流失,随土层加深而呈下降趋势。相关分析表明,地表总盖度、地表植被均匀度、土壤养分含量与壤中流氮、磷含量间存在显著相关性,而降雨特征(降雨量、降雨强度)与壤中流氮、磷含量问相关性不显著。由于人为开采严重,在分析该地区壤中流氮素含量时,应注意干湿沉降的影响。  相似文献   

19.
Animals can be important in nutrient cycling in particular ecosystems, but few studies have examined how this importance varies along environmental gradients. In this study we quantified the nutrient cycling role of an abundant detritivorous fish species, the gizzard shad (Dorosoma cepedianum), in reservoir ecosystems along a gradient of ecosystem productivity. Gizzard shad feed mostly on sediment detritus and excrete sediment-derived nutrients into the water column, thereby mediating a cross-habitat translocation of nutrients to phytoplankton. We quantified nitrogen and phosphorus cycling (excretion) rates of gizzard shad, as well as nutrient demand by phytoplankton, in seven lakes over a four-year period (16 lake-years). The lakes span a gradient of watershed land use (the relative amounts of land used for agriculture vs. forest) and productivity. As the watersheds of these lakes became increasingly dominated by agricultural land, primary production rates, lake trophic state indicators (total phosphorus and chlorophyll concentrations), and nutrient flux through gizzard shad populations all increased. Nutrient cycling by gizzard shad supported a substantial proportion of primary production in these ecosystems, and this proportion increased as watershed agriculture (and ecosystem productivity) increased. In the four productive lakes with agricultural watersheds (>78% agricultural land), gizzard shad supported on average 51% of phytoplankton primary production (range 27-67%). In contrast, in the three relatively unproductive lakes in forested or mixed-land-use watersheds (>47% forest, <52% agricultural land), gizzard shad supported 18% of primary production (range 14-23%). Thus, along a gradient of forested to agricultural landscapes, both watershed nutrient inputs and nutrient translocation by gizzard shad increase, but our data indicate that the importance of nutrient translocation by gizzard shad increases more rapidly. Our results therefore support the hypothesis that watersheds and gizzard shad jointly regulate primary production in reservoir ecosystems.  相似文献   

20.
Pollution in the marine protected area of North Sporades Islands was investigated in July 1997. Salinity, temperature, dissolved oxygen, dissolved inorganic nutrients, organic carbon, hydrocarbons as well as dissolved and particulate trace metals were determined at 15 offshore and coastal stations. Dissolved organic carbon and inorganic nutrient concentrations indicate the mesotrophic character of the investigated waters. The dissolved forms of nitrogen were slightly higher at coastal stations. Dissolved and particulate Cu, Zn and Ni, were higher in coastal stations, whereas concentrations of Pb were generally low and likely of atmospheric origin. Dissolved/Dispersed petroleum hydrocarbons (DDPH) were close to detection limits at all stations. Temperature and salinity vertical profiles, nutrient and trace metal concentrations revealed the presence of a slight influence of the Black Sea water coming from Dardanelles straits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号