首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Evaluation of pectin binding of heavy metal ions in aqueous solutions   总被引:6,自引:0,他引:6  
Kartel MT  Kupchik LA  Veisov BK 《Chemosphere》1999,38(11):2591-2596
Evaluation of adsorption performance of several industrially manufactured pectins towards some toxic heavy metals was carried out. Adsorption isotherms for divalent cations in simulant aqueous solutions were measured and corresponding distribution coefficients were calculated. The following selectivity sequences we found for pectins: Pb2+ > Cu2+ > Co2+ > Ni2+ > Zn2+ > Cd2+. It was shown that a beet pectin exhibits a high affinity for Pb2+ and Cu2+ ions, an apple pectin for Co2+ ion and a citrus pectin for Ni2+ ion. The binding properties of all pectins towards Zn2+ and Cd2+ ions are extremely poor. The quantitative data on adsorption performance of pectins suggest their applicability as food additives or remedies for efficient removal of Pb2+, Cu2+, Co2+, and Ni2+ ions from different biological systems, including human and animal organisms.  相似文献   

2.

Purpose

The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.

Methods

Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.

Results

The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin?CRadushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.

Conclusion

The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.  相似文献   

3.
Kang SY  Lee JU  Moon SH  Kim KW 《Chemosphere》2004,56(2):141-147
Adsorption properties of Co2+, Ni2+, and Cr3+ on an Amberlite IRN-77 cation exchange resin were investigated in batch systems. Levels of adsorption rapidly approached an equilibrium state within 1 h. The adsorption characteristics of each metal onto the resin were accurately represented by Langmuir isotherms. Co2+ and Ni2+, which have an equivalent electrovalence, displayed similar levels of adsorption onto the resin when they coexisted in the solution. However, when Cr3+ was added to the solution it competitively replaced Co2+ and Ni2+ ions that had been previously adsorbed onto the resin, resulting in the desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr3+ relative to Co2+ and Ni2+. This implies that interactively competitive adsorption of multi-cations onto the resin should be thoroughly considered when contemplating the efficient operation of an ion exchange process in the treatment of industrial wastewater.  相似文献   

4.
Chung HH  Jung J  Yoon JH  Lee MJ 《Chemosphere》2002,47(9):977-980
This study investigates the effect of initial tetrachloroethylene (PCE) concentration, irradiation dose and dissolved metal ions such as Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+ on removal of PCE by gamma irradiation. The amount of removed PCE decreased with increase in initial PCE concentration and increased with increase in irradiation dose. PCE removal reached a maximum in the presence of Fe3+, while Cu2+ strongly hindered PCE decomposition. Except for Cu2+, the amount of removed PCE in the presence of metal ions was linearly dependent on the standard reduction potential of the metal ions. The extraordinary inhibition of Cu2+ in PCE removal was caused by the action of Cu2+ as a strong *OH scavenger, that was directly confirmed by electron paramagnetic resonance spectroscopy.  相似文献   

5.
Simultaneous heavy metal removal mechanism by dead macrophytes   总被引:13,自引:0,他引:13  
The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions.  相似文献   

6.
研究了不同浓度磷酸改性凹凸棒粘土的比表面积、孔结构性质以及其对水中Pb(Ⅱ)的吸附.结果表明,凹凸棒粘土磷酸改性后比表面积明显增大,具有明显的中孔分布;9 mol/L磷酸改性处理的凹凸棒粘土吸附能力最佳,在改性凹凸棒粘土加入量为20~30 g/L,水样pH=5条件下,废水中Pb(Ⅱ)的被吸附率接近99%.  相似文献   

7.
以煤矸石为原料,采用碱熔后水热合成法制备X型分子筛并进行XRD、SEM、BET和Zeta电位分析。研究其对水中Co2+、Cu2+、Cd2+和Cr3+4种离子的吸附性能,包括吸附等温线、吸附动力学以及初始金属离子浓度、pH值对吸附性能的影响。所合成的矸石基X型分子筛的BET比表面积为676.02 m2/g,微孔孔容为0.263 cm3/g。吸附实验表明,矸石基X型分子筛能有效去除上述4种离子,同时实现煤矸石的资源化和金属离子的去除。4种离子的平衡吸附量均随初始浓度的增大而增大,相同条件下平衡吸附量的大小顺序为Cd2+>Cr3+>Cu2+>Co2+。准二级动力学模型能很好地描述4种离子的吸附动力行为。Langmuir模型对Co2+、Cu2+和Cd2+吸附的拟合较Freundlich模型高,说明其主要表现为物理吸附过程。4种离子的吸附速率均由液膜扩散和颗粒内扩散共同控制。  相似文献   

8.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

9.
The potential of purple non-sulphur bacteria for bioremediation was assessed by investigating the ability of Rhodobacter sphaeroides strain R26.1 to grow photosynthetically in heavy metal contaminated environments. Bacterial cultures were carried out in artificially polluted media, enriched with the transition metal ions Hg2+, Cu2+, Fe2+, Ni2+, Co2+, MoO4(2-), and CrO4(2-) in millimolar concentration range. For each investigated ion the effect on growth parameters was evaluated. The analysis of concentration-effect curves revealed a differentiated response, indicating that diverse mechanisms of tolerance and/or resistance are involved. Adaptation or selection procedures were not applied, leading to assess intrinsic abilities of coping with these contaminants. The microorganism proved to be highly tolerant to heavy metal exposure, especially towards Co2+, Fe2+ and MoO4(2-). In addition Ni2+ and Co2+ were found to decrease the cellular content of light harvesting complexes. A characteristic behavior was observed with mercuric ions, which produced a significant increase of the lag-phase.  相似文献   

10.
In this work Paspalum notatum root material was used to elucidate the influence of acid leaching pre-treatment and of sorption medium on metal adsorption. Ground P. notatum root was leached with 0.14M HNO(3). Leached root material (LRM) and non-leached root material (NLRM) were employed to flow sorption of Ni(II), Cu(II), Al(III) and Fe(III) in 0.5M CH(3)COONH(4) medium at pH 6.5. For LRM the sorption was also studied in 0.5M KNO(3) medium. The acid pre-treatment increased the sorption capacity (SC) for all ions studied. For the KNO(3) medium, Cu(II) and Fe(III) sorption was higher than in CH(3)COONH(4) and the type of the Ni(II) isotherm's model changed. The Freundlich model was the most representative isotherm model to describe metallic ions sorption. The (1)H NMR spectra showed differences between LRM and NLRM and the acid-basic potentiometric titration elucidated that acid-leaching procedure affected the root material sorption sites once only two predominant sorption sites were found for LRM (phenolic and amine, both able cations sorption) and five sorption sites (two carboxylic, amine and two phenolic) were founded for NLRM.  相似文献   

11.
皂化改性橘子皮生物吸附剂对重金属离子的吸附   总被引:3,自引:0,他引:3  
以生物废料橘子皮(OP)为原料,经乙醇、氢氧化钠处理,得到改性橘子皮生物吸附剂SOP,将其用于对重金属离子Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的吸附。研究了溶液pH、吸附时间和重金属离子初始浓度对SOP吸附性能的影响。结果表明,重金属离子在生物吸附剂上的吸附速率快,符合准二级动力学方程。SOP对重金属离子的吸附等温线符合Lang-muir模型,根据Langmuir模型计算SOP对Cu2+、Pb2+、Cd2+、Zn2+和Ni2+的饱和吸附量分别为56.82、152.4、66.27、33.90和23.02 mg/g,均高于改性前。常见阳离子的存在对重金属离子吸附的影响较小,改性后的橘子皮生物吸附剂可以再生重复使用4次以上,是性能良好的重金属离子吸附剂。  相似文献   

12.
In the present study, response surface methodology (RSM) based on the Box-Behnken design (BBD) was employed to investigate the effects of the different operating conditions on the removal of the fungicide (Vapam) onto soil modified with perlite using sorption process. The process parameters such as pH of the fungicide solution (2, 5 and 8), temperature (15, 25 and 35°C), shaking time (2, 13 and 24 h) and the percentage of perlite in the modified soil (0, 2 and 4 %) were investigated using a four-factor-three-level Box-Behnken design at an initial fungicide concentration of C0 = 1.6 mg/L as a fixed input parameter. A second-order quadratic model suggested the optimum conditions to be as follows: fungicide solution pH of 3.57, temperature of 15°C, shaking time of 3.5 h and 4% of perlite in the modified soil which resulted in the improvement of Vapam sorption. Under optimum conditions, the fungicide (Vapam) removal was predicted 12.88 μg/g by BBD. The confirmatory experiments were conducted and the results revealed that the fungicide removal was 13.14 μg/g which indicated that the predicted and the observed values of response (Vapam removal) were in close agreement. Therefore, the soil modified with perlite holds good potential for Vapam sorption. This is the first report on fungicide Vapam sorption onto soil modified with perlite using statistical experimental design employing response surface methodology.  相似文献   

13.
介绍了利用酸洗废液为原料制备复合亚铁型混凝剂的新方法 ,并用制得的产品应用于电镀和印染废水治理工程。工程应用及实验结果表明 ,对含Ni2 + 、Cu2 + 和Cr6+ 的电镀废水 ,能使Ni2 + 、Cu2 + 出水浓度 <0 .1mg/L ,Cr6+ 未检出 ,还能处理数种化学镀废液。对印染废水 ,COD去除率和脱色率可分别达到 84 %和 98%以上 ,值得进一步研究和推广  相似文献   

14.
以聚乙烯醇和海藻酸钠作为载体,制备了固定化啤酒酵母菌颗粒。研究了固定化啤酒酵母菌对锶的吸附机制和吸附热力学。结果表明:(1)吸附Sr2+后的固定化啤酒酵母菌的内部结构更松散,更有利于固定化啤酒酵母菌对Sr2+的吸附。(2)固定化啤酒酵母菌吸附Sr2+后,部分-OH参与了吸附,使形成的氢键部分断开,振动峰发生蓝移。另外,由于-NH2和-CO-NH-中的N原子可提供孤对电子与有空轨道的Sr2+配位,从而改变了基团的极性。(3)当Sr2+初始质量浓度为10~200mg/L时,固定化啤酒酵母菌对Sr2+的吸附同时符合Freundlich和Langmuir吸附模型,但符合Langmuir吸附模型的程度更优,这说明固定化啤酒酵母菌与Sr2+之间主要通过分子间引力产生吸附,是以单分子层吸附为主的物理吸附。  相似文献   

15.

Purpose

The objectives of this research are to identify the functional groups and determine corresponding pK a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model.

Methods

CaCl2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures.

Results

The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions.

Conclusions

The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.  相似文献   

16.
Goal, Scope and Background The retention of lead by a Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) at different pH values was evaluated and the lead sorption mechanisms on the zeolitic material in this work were discussed. Methods Isotherms were determined using lead nitrate solutions (initial pH values between 2 and 5) at 303 K. After the equilibrium was reached, the content of lead in the liquid phases was determined by atomic absorption spectrometry. The elemental composition of the clinoptilolite-rich tuff before and after the lead sorption process was evaluated by electron microscopy. Results The maximum ion exchange capacity of the Mexican, clinoptilolite-rich tuff for lead was 1.4 meq/g at pH 3, considering an ion exchange mechanism in the absence of any precipitated or hydrolyzed lead species in the sorption process or any change in the zeolite network. Langmuir and Freundlich isotherms were also considered in this work for comparison purposes. Discussion It is important to consider the nature of the sorption processes before choosing a model to describe the interaction between the metal ions and the sorbent. Conclusions The chemical lead speciation, the pH, as well as the characteristics of the clinoptilolite-rich tuff are important factors to be considered on the lead sorption process by natural zeolites. The chemical species involved in that process are Na+ from the zeolite and Pb2+ from the aqueous solution at pH 2 and 3, so that the ion exchange mechanism explains the lead sorption processes by the clinoptilolite-rich tuff through the ion exchange isotherms. The sodium, Mexican, clinoptilolite-rich tuff is a potential adsorbent for lead from aqueous solutions. Recommendations and Perspectives The natural zeolite-rich tuffs are very important as ion exchangers for the treatment of polluted water due to their sorption properties and low cost. The sorption behavior of each natural material depends on their composition. Mexican, clinoptilolite-rich tuff from Oaxaca (Mexico) could be used for the treatment of waste water contaminated with lead. It would be important to propose this material as an alternative as waste water treatment, because it shows good selectivity for the removal of heavy metals from water.  相似文献   

17.
Functionalized magnetic core–zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb2+ and Cd2+) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic, sorption isotherms, and pH effect. The removal mechanism of metal ions was done by chem–phys sorption and ion exchange processes through the zeolitic channels and pores. The experimental data were well fitted by the appropriate kinetic models. The sorption rate and sorption capacity of metal ions could be significantly improved by optimizing the parameter values.  相似文献   

18.
Retardation capacity of organophilic bentonite for anionic fission products   总被引:7,自引:0,他引:7  
Sorption and diffusivity of iodide and pertechnetate (I- and TcO4-) on MX-80 bentonite with different hexadecylpyridinium (HDPy+) loadings were studied using equilibrium solutions of different ionic strengths. In HDPy(+)-modified bentonite, iodide and pertechnetate ions exhibited increasing sorption (characterized by the distribution ratio, Rd), while Cs+ and Sr2+ showed decreasing sorption with increasing organophilicity. In case of medium-loading levels, the simultaneous sorption of anions (I- and TcO4-) and cations (Cs+ and Sr2+) was observed. Sorption of ions was influenced by the composition of the electrolytes employed. It decreased gradually with increasing ionic strength of the electrolyte solutions. The experiments revealed the general tendency that the diffusivity (Da [cm2.s-1]) for iodide and pertechnetate decreases with increasing organophilicity and increases with increasing ionic strength of the equilibrium solutions, confirming the results of the sorption experiments. Additionally, some mineralogical and chemical investigations, like IR spectral analysis of the organo-bentonite samples and exchange behavior of HDPy+, were performed. On the basis of these analyses, it was concluded that the alkylammonium ions are sorbed as (1) HDPy+ cations, (2) HDPyCl molecules and (3) micelles with decreasing binding intensities in this order.  相似文献   

19.
Natural clinoptilolite can be used as an ion exchanger for removal of heavy metals and treatment of environmental pollution because of its desirable characteristics of high ion exchange selectivity and resistance to different media. In this work, the potential of natural clinoptilolite from G?rdes mines (West Anatolia, Turkey) for the uptake of lead(II), nickel(II), copper(II), and zinc(II), from their single and mixed ion solutions, was evaluated using the batch method. The mineralogical and chemical properties of the sorption material were carried out by X-ray diffraction, X-ray fluoremetry, scanning electron microscopy, and wet analysis. Contact time, initial solution pH, solid-to-liquid ratio, and initial metal cation concentration were determined as single ion sorption parameters. The silicon/aluminum ratio and the theoretical and equivalent exchange capacities, both in single and mixed solutions, were established. Corresponding adsorption constants and distribution coefficients have been found.  相似文献   

20.
The aim of this paper was to investigate the capacity of a small water fern, Azolla caroliniana Willd. (Azollaceae), to purify waters polluted by Hg and Cr. Many plants are capable of accumulating heavy metals (called hyperaccumulators) and one of them is the water fern A. caroliniana. During 12 days of the experiment the fern was grown on the nutrient solution containing Hg2+, Cr3+ and CrO4(2-) ions, each in a concentration 0.1, 0.5 and 1.0 mg dm(-3). The presence of these ions caused a 20-31% inhibition of A. caroliniana growth, the highest in the presence of Hg(II) ions, in comparison to the control. After day 12 of the experiment, metal contents the solution decreased to 0-0.25 mg dm(-3), and this decrease comprised between 74 (Cr3+ 1.0 mg dm(-3) treatment) and 100% (CrO4(2-) 0.1 mg dm(-3) treatment). The fern took a lesser quantity of the metals from 0.1 mg dm(-3) treatments compared to 0.5 and 1.0 mg dm(-3) treatments. In the A. caroliniana tissues the concentration of heavy metals under investigation ranged from 71 to 964 mg kg(-1) dm; the highest level being found for Cr(III) containing nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号