首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The non-geniculate crustose coralline alga (CCA) Mastophora pacifica can induce the metamorphosis of competent Haliotis asinina (Vetigastropoda) larvae. The ability to respond to this natural cue varies considerably with larval age, with a higher proportion of older larvae (e.g. 90 h) able to metamorphose in response to M. pacifica than younger larvae (e.g. 66 h). Here we document the variation in time to acquisition of competence within a larval age class. For example, after 18 h of exposure to M. pacifica, approximately 15 and 36% of 84 and 90-h-old H. asinina larvae had initiated metamorphosis, respectively. This age-dependent response to M. pacifica is also observed when different aged larvae are exposed to CCA for varying periods. A higher proportion of older larvae require shorter periods of exposure to CCA than younger larvae in order to initiate metamorphosis. In this experiment, as in the previous, a small proportion of young larvae were able to respond to brief periods of CCA exposure, suggesting that they had developed the same state of competency as the majority of their older counterparts. Comparisons of the proportions of larvae undergoing metamorphosis between families reveals that parentage also has a significant (P<0.05) affect on whether an individual will initiate metamorphosis at a given age. These familial differences are more pronounced when younger, largely pre-competent larvae (i.e. 66 h old) are exposed to M. pacifica, with proportions of larvae undergoing metamorphosis differing by as much as 10 fold between families. As these data suggest that variation in the rate of development of the competent state has a genetic basis, and as a first step towards identifying the molecular basis to this variation, we have identified numerous genes that are differentially expressed later in larval development using a differential display approach. Spatial expression analysis of these genes suggests that they may be directly involved in the acquisition of competence, or may play a functional role in the postlarva following metamorphosis.Communicated by M.S. Johnson, Crawley  相似文献   

2.
M. Kay 《Marine Biology》2002,141(3):467-477
The ribbed limpet, Lottia digitalis, is found high in rocky intertidal habitat throughout its geographic range. In order to identify likely natural settlement locations for larvae of this species, laboratory-reared larvae were settled onto substrata collected from within and near an adult L. digitalis habitat. Of larvae exposed to rock chiseled from within high-intertidal adult habitat, 31.0% and 23.3% underwent metamorphosis during two separate experiments. Similarly, an unidentified filamentous green alga that was isolated from this rock induced metamorphosis in 26.6% and 8.7% of larvae during additional experiments. In contrast, larvae did not metamorphose upon bare rocks or upon rocks encrusted with a crustose corraline alga (CCA) that were collected from lower intertidal zones, nor did they metamorphose upon the macroalgae Ulva sp., Enteromorpha contorta, Alaria marginata, or Polysiphonia sp. The presence of mucus from adult conspecifics during these experiments did not enhance metamorphosis onto rock taken from adult habitat, but it did induce metamorphosis in an average of 13.5% and 7.0% of larvae introduced to the mid-intertidal bare rock and CCA substrata, respectively. Finally, 38.0% and 34.4% of larvae from two experiments underwent metamorphosis when exposed to the high-intertidal barnacle Pollicipes polymerus. These results suggest that larval settlement, rather than differential post-settlement mortality and/or migration, drives recruitment of L. digitalis in high-intertidal habitats.  相似文献   

3.
Potent inducers of metamorphosis of planktonic larvae of the gastropod mollusc Haliotis rufescens have been found in the following phycobiliprotein-producing cyanobacteria. Synechococcus spp. (one marine and one freshwater strain). Synechocystis spp. (one hypersaline and one freshwater strain) and Spirulina platensis (a freshwater strain). No inducers were detected in the bacterium Escherichia coli. Inducers from one of the cyanobacteria (S. platensis) were partially purified and compared to inducers from the foliose red macroalga Porphyra sp. and the crustose coralline red alga Lithothamnium californicum. In all three species the inducers can be largely separated from the biliproteins, with which they appear to be associated, by high-resolution gel-filtration chromatography. The molecular weights of the relatively small inducing molecules resolved by these procedures from cyanobacteria and red algac are similar, falling in the range of 640 to 1 250 daltons. The amenability of the cyanobacteria to largescale cultivation, and to physiological and genetic manipulation, make them useful for production of metamorphic inducers of marine invertebrate larval metamorphosis, and for further studies of the synthesis, structure and mechanism of action of such inducing molecules.  相似文献   

4.
Settlement of mussels is commonly associated with macroalgae. The effects of 19 macroalgal species on the settlement and metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis were investigated in the laboratory. Settlement and metamorphosis inducing activities of macroalgae Chlorodesmis fastigiata and Ceramium tenerrimum collected each month during the period between January 2005 and April 2006 were also investigated. Furthermore, C. fastigiata and C. tenerrimum were subjected to various treatments to investigate the roles of bacteria and diatoms on the algal surface in the induction of larval settlement and metamorphosis of M. galloprovincialis and the characteristics of the cues in these two macroalgae. Pediveliger larvae of M. galloprovincialis settled and metamorphosed in high percentages on Cladophora sp., Chlorodesmis fastigiata, Centroceras clavulatum, and Ceramium tenerrimum, all of which were filamentous in morphology. Macroalgae that were cylindrical, phylloid, flabellate, palmate and pinnate all showed low (<8%) percentages of post-larvae but four other filamentous macroalgae also had low mussel larval settlement, suggesting that chemical factors may also be involved. Seasonal variation had no effect on inductive activities of C. fastigiata and C. tenerrimum. Treatment of C. fastigiata and C. tenerrimum with formalin, ethanol and heat resulted in the significant decrease or loss of their inductive activities. Survival of algal cells within treated macroalgae also decreased significantly. Treatment of the two macroalgae with antibiotics and GeO2 reduced the numbers of bacteria and diatoms on their surface but did not affect their inductive activities, indicating that the cue was produced by macroalgae and not by coexisting bacteria and diatoms. However, conditioned water and crude extracts of these two macroalgae did not induce larval settlement and metamorphosis. Thus, larvae of M. galloprovincialis settled and metamorphosed on specific filamentous macroalgae. The chemical cues produced by C. fastigiata and C. tenerrimum were susceptible to ethanol and heat treatments and were not recovered in the conditioned water nor in the extracts. The finding that inactive C. tenerrimum can be produced from culturing its apical segments provides a new tool to elucidate the chemical cue(s) from macroalgae through manipulation of their culture conditions.  相似文献   

5.
R. J. Rowley 《Marine Biology》1989,100(4):485-494
I sampled recruitment of very small sea urchins (Strongylocentrotus spp.) by using the anesthetic magnesium chloride to remove individuals from substrata collected in sea-urchin barren grounds (barrens) and kelp beds at Naples Reef near Santa Barbara, California, USA. Preliminary sampling found low numbers of newly settled individuals(<0.6 mm test diam) from April–July in 1984 and 1985, and in April, 1986. In early May, 1986, I found many newly settled seaurchins (0.3 to 0.6 mm, 5 to 17 d old), and I compared the densities of the cohort on several types of natural substrata in barrens and kelp-bed habitats. Newly settled individuals of both purple sea urchins (S. purpuratus) and red sea urchins (S. franciscanus) were present in similar, high densities (1 000 S. purpuratus m-2) on foliose red algal turf, a dominant substratum ofthe kelp bed, and on crustose coralline algae, the dominant substratum of an adjacent barrens. Larvae of S. purpuratus reared and tested in the laboratory showed high rates of settlement on both red algal turf and on crustose coralline algae, but significantly lower rates on rock. Larvae also settled in response to a partiallypurified extract of coralline algae. The reduced settlement on natural rock surfaces relative to either algal treatment and the significant settlement in response to the extract of coralline algae indicate that larvae discriminate between natural substrata and probably respond to a settlement cue other than, or in addition to, a simple microbial (bacterial) film. The similar densities of young recruits of S. purpuratus on dominant substrata of barrens and kelp bed show that, at least in this case, differential settlement cannot explain the high densities of sea urchins in the barrens habitat. Movement between barrens and kelp bed is unlikely given the small sizes of the newly recruited sea urchins relative to the large distances often involved. Reduced post-settlement mortality of newly settled individuals in the barrens remains the most likely mechanism leading to the higher densities of sea urchins in barrens relative to kelp-bed habitats.  相似文献   

6.
Many species of marine invertebrate larvae settle and metamorphose in response to chemicals produced by organisms associated with the adult habitat, and histamine is a cue for larvae of the sea urchin Holopneustes purpurascens. This study investigated the effect of histamine on larval metamorphosis of six sea urchin species. Histamine induced metamorphosis in larvae of three lecithotrophic species (H. purpurascens, Holopneustes inflatus and Heliocidaris erythrogramma) and in one planktotrophic species (Centrostephanus rodgersii). Direct comparisons of metamorphic rates of lecithotrophic and planktotrophic larvae in assays cannot be made due to different proportions of larvae being competent. Histamine (10 μM) induced metamorphosis in 95% of larvae of H. purpurascens and H. inflatus after 1 h, while the coralline alga Amphiroa anceps induced metamorphosis in 40–50% of these larvae. Histamine (10 μM) and A. anceps induced 40 and 80% metamorphosis, respectively, in the larvae of H. erythrogramma after 24 h. Histamine (10 μM) and the coralline alga Corallina sp. induced 30 and 70% metamorphosis, respectively, in the larvae of C. rodgersii after 24 h. No metamorphosis of any larval species occurred in seawater controls. Larvae of two planktotrophic species (Tripneustes gratilla and Heliocidaris tuberculata) did not metamorphose in response to histamine. Seagrasses, the host plants of H. inflatus, induced rapid metamorphosis in larvae of the two Holopneustes species, and several algae induced metamorphosis in C. rodgersii larvae. Histamine leaching from algae and seagrasses may act as a habitat marker and metamorphic cue for larvae of several ecologically important sea urchin species.  相似文献   

7.
Surfaces from the habitat of adult Haliotis rubra were tested as inducers of larval settlement to determine the cues that larvae may respond to in the field. Settlement was high on the green algal species Ulva australis and Ulva compressa (Chlorophyta), the articulated coralline algae Amphiroa anceps and Corallina officinalis, and encrusting coralline algae (Rhodophyta). Biofilmed abiotic surfaces such as rocks, sand and shells did not induce settlement. Ulvella lens was also included as a control. Treatment of U. australis, A. anceps and C. officinalis with antibiotics to reduce bacterial films on the surface did not reduce the settlement response of H. rubra larvae. Similarly, treatment of these species and encrusting coralline algae with germanium dioxide to reduce diatom growth did not significantly reduce larval settlement. These results suggest that macroalgae, particularly green algal species, may play an important role in the recruitment of H. rubra larvae in the field and can be used to induce larval settlement in hatchery culture.  相似文献   

8.
Settlement sites of marine invertebrate larvae are frequently influenced by positive or negative cues, many of which are chemical in nature. Following from the observation that many shallow-water, Hawai'ian marine macroalgae are free of fouling by sessile invertebrates, we predicted that the algae are chemically protected and dependent on either surface-bound or continuously released soluble compounds to deter settling invertebrate larvae. To address the importance of waterborne algal compounds, we experimentally determined whether larvae of two of Hawai'i's dominant hard-surface fouling organisms, the polychaete tube worm Hydroides elegans and the bryozoan Bugula neritina, would settle in the presence of waters conditioned by 12 species of common Hawai'ian macroalgae (representing the Phaeophyta, Chlorophyta, Rhodophyta and Cyanophyta). The results included a full spectrum of biological responses by each larval species to waterborne algal compounds. Larval responses to conditioned water were consistent for each algal species, but the outcomes were not predictable based on the taxonomic relationships of the algae. For example, among the species of Phaeophyta examined, different conditioned waters were: (1) toxic, (2) inhibited settlement, (3) simulated settlement, or (4) had no effect, compared to larvae in control dishes containing filtered seawater. Additionally, larval responses to aged (24 h) conditioned waters could not be predicted from the results of assays run with conditioned waters utilized immediately after preparation. Finally, settlement by larvae of one species did not predict outcomes of tests for the other species. Four of 12 shallow-reef Hawai'ian macroalgae tested released compounds into surrounding waters that immediately killed or inhibited settlement by both H. elegans and B. neritina (toxic: Dictyota sandvicensis; inhibitory: Halimeda discoidea, Sphacelaria tribuloides, Ulva reticulata); the remaining 8 algal species prevented settlement by one of these fouling organisms but for the other had no effect or, in some cases, even stimulated settlement  相似文献   

9.
Lipophilic inducers of larval settlement and metamorphosis of Pseudocentrotus depressus and Anthocidaris crassispina, two commercially important sea urchin species in Japan, were isolated from the foliose coralline red alga Corallina pilulifera (collected in 1990 near Saga, Japan) and identified. Larval assays of the fractions obtained by silica gel column chromatography of the total lipids showed that non-polar groups of lipids were effective at inducing larval settlement and metamorphosis. The effective fractions were further subjected to gel filtration (Sephadex LH-20) and also to silica gel column chromatography, and the effective components isolated as single spots by thin-layer chromatography. The components at a concentration of ca. 0.4 mg paper-1 (sample was adsorbed on a paper with 20 cm2) induced high rates of larval settlement of both P. depressus and A. crassispina. Chemical analyses of the components revealed a mixture of free fatty acids (FFAs), dominated by eicosapentaenoic acid (20:5, 41 to 50%), palmitic acid (16:0, 11 to 17%), arachidonic acid (20:4, 9 to 15%), and palmitoleic acid (16:1, 4 to 5%). In assays with the four standard FFAs, only 20:4 and 20:5 induced larval settlement and metamorphosis of the two species, while 16:0 and 16:1 were ineffective. The larvae underwent significant rates of settlement and metamorphosis in response to the two former FFAs at levels as low as 0.18 mg paper-1. Amongst the free fatty acid components of the alga, 20:5 was isolated as the chemical inducer of larval settlement and metamorphosis of the sea urchins in the laboratory.  相似文献   

10.
Laboratory-cultured larvae of the black chiton Katharina tunicata (Wood), collected from central California in May and June of 1979 and 1980, settled preferentially on the encrusting coralline alga Lithothamnium sp. Metamorphosis, which involves the loss of the prototrochal ciliary band, occurred within a period of 2.5 h after larvae began crawling upon the alga. In response to gamma-aminobutyric acid (GABA) at a concentration of 10-6 M, the lecithotrophic trochophore larvae ceased swimming and settled rapidly. Developmental metamorphosis did not follow settlement in the absence of encrusting coralline alga. However, when both GABA and Lithothamnium sp. were present, larval metamorphosis occurred within 2 h of settlement. Significantly different rates of settlement exist for sibling larvae of different ages; 12 d-old larvae responded more rapily and in greater numbers to treatment with GABA than 10 d-old larvae. Differences in settling rates are attributed to the onset of metamorphic competence.  相似文献   

11.
The serpulid polychaete Hydroides elegans Haswell, 1883 is an early colonist of new substrata in Pearl Harbor, Oahu, Hawaii. When metamorphically competent, larvae of H. elegans will settle rapidly upon an acceptably biofilmed surface, but not on a clean surface. In this study we found the ability of larvae to respond selectively to inductive surfaces to be retained for at least 3 wk. Of a series of bacterial strains isolated from Hawaiian marine biofilms, 13 induced larval settlement, 11 gave moderate or mixed results, and 10 others did not stimulate the settlement of H. elegans. The amount of settlement induced by monospecific strains was rarely as great as with natural, multispecies films. Most of the isolated bacteria were motile Gram-negative rods, but Gram-positive strains were also present, and diverse metabolic types were represented in the study. Biofilms killed by treatment with heat, ultraviolet radiation or chemical fixatives were no longer inductive. Soluble, dialyzable, heat-stable bacterial products induced settlement and metamorphosis more slowly. The range of bacteria producing an inductive signal suggests either that there are multiple cues, or that the cue is common to many bacteria. Chemical signals characteristic of early microbial biofilms may indicate freshly available substrata with optimal potential for the growth and survival of H. elegans. Received: 30 January 1998 / Accepted: 12 September 1998  相似文献   

12.
The lined chiton Tonicella lineata (Wood, 1815) is found on enerusting coralline algae in the lower rocky intertidal zone of Oregon and San Juan Island, Washington, USA. An encrusting coralline alga is the major food item of this chiton. Experiments were performed to test the settling response of T. lineata larvae to various algae and other substrata. In these experiments, the larvae would settle only on pieces of encrusting coralline algae and piecesof ceramic roofing tile soaked in a coralline algal extract. The settling stimulus is probably chemical in nature, and is inactivated by boiling. In laboratory cultures, normal development stops at the trochophore stage (110 to 160 h, depending on the temperature). Metamorphosis and further development will take place only after stttlement on encrusting coralline algae.  相似文献   

13.
To test whether coral planulae recruit randomly to different coral reef habitats or have specific substratum preferences, the settling behavior of planulae from two shallow water coral species from Pago Bay, Guam (13°25.02N, 144°47.30E) were examined in the laboratory in June and July of 1995. Goniastrea retiformis is generally restricted to the shallow reef front (<10 m depth) in areas dominated by crustose coralline algae (CCA), while Stylaraea punctata is abundant on inner reef flats were CCA coverage is low and sand and carbonate rubble covered by biofilms is common. When presented with four substrata (1) carbonate rock scrubbed free of biofilm and dried as a control, (2) the CCA Hydrolithon reinboldii, (3) the CCA Peyssonelia sp., and (4) naturally conditioned carbonate rubble covered by a biofilm, G. retiformis larvae showed a significant preference for H. reinboldii, and S. punctata larvae for the carbonate biofilm treatment. The preference shown by S. punctata larvae for biofilmed surfaces did not diminish with increasing larval age up to 11 days. These results suggest that the larvae of both species are capable of habitat selection, and that the preferred substrata among those tested bears a relationship to the habitats in which adult colonies were found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Biofilms were allowed to develop on glass slips immersed 1.0–1.5 m below the sea surface in Tachibana Bay, Nagasaki, Japan, for different periods of time from November 2003 to January 2005. The effects of age, immersion month, dry weight, bacterial and diatom densities of these biofilms on the settlement and metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis were investigated in the laboratory. Furthermore, biofilms were subjected to various treatments to investigate the nature of the settlement and metamorphosis cue in the biofilm. Pediveliger larvae of the mussel settled and metamorphosed in response to biofilms. Settlement and metamorphosis to the post-larval stage significantly increased with the biofilm age. In addition, the biofilm activity varied depending on the immersion month (season), e.g., for biofilms with the same age, those immersed between June and August had higher activities than those immersed between November and March. The activity of the biofilm also positively correlated with the dry weight, bacterial and diatom densities. These three quantitative parameters of the biofilm were significantly affected by the film age but were not affected by the immersion month, suggesting that other parameters (e.g., community structures, extracellular products) also affected the inductive activity of the biofilm. The fixative agents (formalin and glutaraldehyde), heat, ethanol, ultraviolet irradiation and antibiotics treatments of the biofilm resulted in significant reduction or loss of its inductive activity. The survival of bacterial cells in the treated films where activities were either reduced or lost also decreased significantly. No settlement and metamorphosis were obtained when larvae were exposed to the conditioned water of the biofilm. Thus, larvae of M. galloprovincialis settled and metamorphosed in response to a cue produced by living bacteria in the biofilm. The cue may be a bacterial extracellular product which was susceptible to the above treatments.  相似文献   

15.
Cladopsammia gracilis (Dendrophylliidae), an ahermatypic coral inhabits the northern Red Sea. Two color morphs (pink and orange) are found aggregated in caves devoid of hermatypic corals, associated with crustose coralline algae (CCA). Sequencing the rDNA ITS region revealed a separate clustering of members of each color morph. Both morphs grow in shallow waters, with orange corals limited to the upper 4 m, while some pink coral aggregates thrive deeper than 30 m. Planulae were released between June and December. Pink planulae treated with antibiotics and exposed at different intervals to CCA, were competent and metamorphosed even 110 days after release. Maximal competency period for orange planulae was 70 days. All planulae were enhanced to metamorphose in presence of CCA. The mean age at metamorphosis of pink and orange planulae treated with CCA differed significantly. Most orange planulae settled directly on the CCA while most pink planulae settled on the wall of the experiment vial. The morphs differed significantly in the calyx cross-section area of primary polyps. Despite being considered a single species according to skeletal based taxonomy, the significant ecological and molecular differences between pink and orange C. gracilis specimens suggest that they may belong to separate species.  相似文献   

16.
Biologically-active substances were investigated from 35 demosponge species and 5 calcareous sponge species collected from intertidal or shallow subtidal habitats near San Diego, California, USA, from 1978 to 1980. Crude methanolic extracts of each species were tested for suppression of growth by bacteria (7 species) and a yeast. Antimicrobial activity was found in 26 Demospongiae and 2 Calcarea. Strong activity was found in 11 demosponges and, subsequently, 38 natural products with antimicrobial activity were isolated from 8 of these species (Aplysina fistularis, Dysidea amblia, Leiosella idia, Euryspongia sp., Toxadocia zumi, Axinella sp., Haliclona?cinerea and ?Pachychalina lunisimilis). Twenty-eight of these natural products (usually as pure compounds) were assayed for: (1) suppression of growth of marine fungi (3 spp.) and a red alga; (2) behavior modifications of invertebrate adults (4spp.); (3) toxicity to a goldfish; (4) inhibition of sexual reproduction of a brown alga; (5) inhibition of settlement and/or metamorphosis of late larvae or invertebrate juveniles (4spp.). Many of the natural products were also incorporated into pelleted fish food and tested for feeding-behavior modifications of fishes (5 spp.). Three of the compounds from Dysidea amblia were inactive in all tests. All other natural products were active in at least one assay, although none was active in all assays. The discussion relates the possession of biologically-active substances to the ecology of each sponge species; for example, sponges with antimicrobial substances are rarely overgrown.  相似文献   

17.
Larval settlement in the marine polychaete Hydroides elegans (Haswell) is induced by certain bacteria in marine biofilms. The exact nature of the settlement cue that larvae of H. elegans receive from these bacteria remains unknown. In this study, we revealed some properties of the bacterially derived larval settlement cue by investigating the larval settlement inductive activity of two bacterial strains after various treatments. These two bacterial strains, Roseobacter sp. and an α-subclass Proteobacteria, are highly inductive to larval settlement of H. elegans. The larvae responded similarly to Roseobacter and Proteobacteria in all the larval settlement bioassays, suggesting that the larval settlement-inducing substances produced by these bacteria may share common characteristics. First of all, the larvae did not settle in the seawater conditioned by the bacteria attached as a film or by the bacteria that were freely suspended in seawater. The results suggest that the putative larval settlement cue is not released into seawater and, therefore, should be associated with the surface of the bacteria. Secondly, formaldehyde treatment entirely eliminated the larval settlement induction activity of the bacterial films, and streptomycin treatment reduced the percentage of larval settlement on the bacterial films in a concentration-dependent manner. Since both treatments can kill bacteria with little damage to the surface chemistry of bacterial cells, the decline in larval settlement is suggested be due to a reduction of the viable bacterial population in the bacterial films. In fact, the reduction of larval settlement in the streptomycin treatments coincided with the decrease in viable bacterial populations in broth cultures containing respective concentrations of streptomycin. These results suggest that the viability of Roseobacter and Proteobacteria is important to their settlement induction effect. Since the larval settlement induction activity of the bacterial strains appears to correlate with their viability, we suggest that the putative larval settlement cue is derived from a metabolic pathway in the bacteria and that the cue is exported to and concentrated at the extracellular polymer matrix of the bacterial cell, at which the larvae establish contact with the bacteria. The larval settlement cue may be highly susceptible to degradation so that a metabolically active bacterial film is needed to maintain the putative cue at a concentration that surpasses the threshold for induction of larval settlement. Received: 14 October 1998 / Accepted: 5 September 2000  相似文献   

18.
Nylund  G. M.  Pavia  H. 《Marine Biology》2003,143(5):875-882
We examined the chemical antifouling properties of four sublittoral red algae, Chondrus crispus, Delesseria sanguinea, Osmundea ramosissima, and Polyides rotundus, which are all rarely fouled in the field. Two different approaches were used. Firstly, we tested the effects of lipophilic crude extracts on the settlement behaviour of cyprid larvae of the co-existing barnacle Balanus improvisus. Secondly, in a settlement preference experiment, we tested whether B. improvisus cyprid larvae settle on living algae when given a choice between natural algal surfaces and control surfaces. With this procedure, we were able to test both if the algae inhibit recruitment of cyprids, and if this inhibition is a result of chemistry. The settlement of B. improvisus larvae was strongly inhibited at concentrations estimated to be potentially ecologically relevant for all of the tested extracts. However, only C. crispus significantly inhibited settlement in the preference experiment, even though there was also a tendency for settlement inhibition on P. rotundus and O. ramosissima. In contrast, D. sanguinea seemed to stimulate settlement. This contradiction probably resulted from an extraction of metabolites that naturally occur only inside the alga. However, as this study shows, a combination of settlement assays with whole-cell extracts and preference tests of ecologically relevant fouling organisms on natural algal and control surfaces may be a useful procedure to avoid erroneous conclusions regarding natural antifouling roles of compounds based on settlement assays with only whole-cell extracts. Furthermore, this study also shows that production of inhibitory metabolites may explain the low degree of fouling, especially by B. improvisus, on C. crispus.Communicated by L. Hagerman, Helsingør  相似文献   

19.
In aquaculture centers of the northern region of Japan, "Nami-ita" (waved polycarbonate plates), on which the green alga Ulvella lens Crouan frat. (Chaetophoraceae: Chaetophorales) was cultured, are used to promote larval settlement and metamorphosis of the sea urchin species Strongylocentrotus intermedius (A. Agassiz) and S. nudus (A. Agassiz). We investigated chemical inducer(s) for larval settlement and metamorphosis of these sea urchins with extracts of U. lens. Bioassay-guided separation of the methanol extract using a combination of column and thin-layer chromatography led to the isolation of several active compounds, the chemical structures of which were determined by spectral and chemical methods. These active compounds were identified as glycoglycerolipids, all comprising several molecular species: sulfoquinovosyl monoacylglycerols (SQMGs), sulfoquinovosyl diacylglycerols (SQDGs), monogalactosyl monoacylglycerols (MGMGs), monogalactosyl diacylglycerols (MGDGs), digalactosyl monoacylglycerols (DGMGs) and digalactosyl diacylglycerols (DGDGs). Among these glycolipids, SQMGs, MGMGs, MGDGs and DGMGs induced larval metamorphosis of the sea urchin S. intermedius. SQMGs and MGDGs induced larval metamorphosis at a concentration of 5 µg ml-1, whereas SQDGs and DGDGs only induced larval settlement. These glycoglycerolipids are new congeners of chemical inducers to settlement and metamorphosis of planktonic larvae of sea urchins. The findings would provide a better understanding of larval settlement and metamorphosis in sea urchins.  相似文献   

20.
P. J. Vine 《Marine Biology》1974,24(2):131-136
Aggressive behaviour of the fishes Pomacentrus lividus Bl. Schn. and Acanthurus sohal Forskal from the Red Sea is briefly described, and its effect on intensity of algal grazing by herbivorous fish is demonstrated by settlement experiments. Green filamentous alga settles and grows at shallow depths over large areas of coral reefs, but is cropped by fishes to such an extent that it forms only a thin patchy matting on dead corals. Within pomacentrid territories, the alga forms a thicker matting on loosely cemented coralline rubble. Optimum depth range for growth occurs at less than 20 m. Rich growths of green filamentous alga, such as those which occur within pomacentrid territories or on settlement plates protected by wire netting cages, inhibit settlement of “lithothamnion” and invertebrates. While rasping and grazing fish feeders such as parrot fish and surgeon fish limit the distribution of certain invertebrates such as spirorbids, in shallow water it is also true that, were it not for such active removal of green filamentous alga, “lithothamnion” and many invertebrates would find ewer surfaces suitable for settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号