首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

2.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

3.
4.
In accidents involving sports utility vehicles (SUVs), injuries to pedestrian leg, knee ligaments, and femur are likely to occur. Therefore, the European Enhanced Vehicle Safety Committee proposed two subsystem test methods for evaluation of SUV bumper aggressiveness. Such evaluation can be conducted by means of either a legform impactor (evaluation of risk of knee and tibia injury), or an upper legform impactor (evaluation of risk of thigh and pelvis injury) test. Each of these two test methods has its own injury criteria and injury acceptance levels. Therefore, the first objective of this research is to clarify any differences between the test results obtained when evaluating SUV bumper aggressiveness by means of these two impactors. The second objective is to determine whether or not a legform impactor can be applied to estimate the risk of femur fracture, and if an upper legform impactor can be used to estimate the risk of knee ligament injury. The present results indicate the test method using an upper legform impactor yields higher ratios of injury criteria to the relevant EEVC/WG17 injury acceptance levels than by using a legform impactor. Thus, the upper legform impactor test rates an SUV bumper as more aggressive than the legform impactor test. The present study suggests the lower leg acceleration obtained by the legform impactor can be used to adequately assess the risk of femur fracture, when evaluating the aggressiveness of an SUV bumper using proposed injury acceptance levels reported in the literature. Similarly, the impact force obtained by the upper legform impactor can be used to assess the risk of cruciate ligament injury.  相似文献   

5.
The effect of muscle activation on neck response   总被引:3,自引:0,他引:3  
Prevention of neck injuries due to complex loading, such as occurs in traffic accidents, requires knowledge of neck injury mechanisms and tolerances. The influence of muscle activation on outcome of the injuries is not clearly understood. Numerical simulations of neck injury accidents can contribute to increase the understanding of injury tolerances. The finite element (FE) method is suitable because it gives data on stress and strain of individual tissues that can be used to predict injuries based on tissue level criteria.The aim of this study was to improve and validate an anatomically detailed FE model of the human cervical spine by implement neck musculature with passive and active material properties. Further, the effect of activation time and force on the stresses and strains in the cervical tissues were studied for dynamic loading due to frontal and lateral impacts.The FE model used includes the seven cervical vertebrae, the spinal ligaments, the facet joints with cartilage, the intervertebral disc, the skull base connected to a rigid head, and a spring element representation of the neck musculature. The passive muscle properties were defined with bilinear force-deformation curves and the active properties were defined using a material model based on the Hill equation. The FE model's responses were compared to volunteer experiments for frontal and lateral impacts of 15 and 7 g. Then, the active muscle properties where varied to study their effect on the motion of the skull, the stress level of the cortical and trabecular bone, and the strain of the ligaments.The FE model had a good correlation to the experimental motion corridors when the muscles activation was implemented. For the frontal impact a suitable peak muscle force was 40 N/cm2 whereas 20 N/cm2 was appropriate for the side impact. The stress levels in the cortical and trabecular bone were influenced by the point forces introduced by the muscle spring elements; therefore a more detailed model of muscle insertion would be preferable. The deformation of each spinal ligament was normalized with an appropriate failure deformation to predict soft tissue injury. For the frontal impact, the muscle activation turned out to mainly protect the upper cervical spine ligaments, while the musculature shielded all the ligaments disregarding spinal level for lateral impacts. It is concluded that the neck musculature does not have the same protective properties during different impacts loadings.  相似文献   

6.
Introduction: Despite extensive media coverage of pedestrians who are injured in collisions with cyclists, little systematic inquiry has been carried out on this topic. This study examines the incidence of pedestrian injuries due to collisions with cyclists in the United States and in New York State and New York City (NYC) from 2005 to 2018. Method: The study rests on national data derived from the Nationwide Emergency Department Sample (NEDS) and state and local data gathered by the Statewide Planning and Research Cooperative System (SPARCS). A negative binomial regression analysis was performed on the state and local data to measure the simultaneous effects of demographic variables on the incidence of pedestrian injuries. The study also mapped the incidence of injuries in NYC neighborhoods. Results: Pedestrian injuries due to collisions with cyclists declined at both the national and state and local levels from 2005 to 2018. The decline was particularly pronounced among school-aged children. In NYC, the distribution of injuries was concentrated in certain neighborhoods. Conclusions: Possible explanations for the decline in injuries include the change in the age composition of NYC’s population, the greater level of physical inactivity among school-aged children, stricter enforcement of traffic laws, and, importantly, improvements in the cycling infrastructure. Practical Applications: Cycling as a mode of transportation is continuing to grow in popularity, particularly in large cities in the United States and Europe. With this upsurge in popularity, it is important to create a safe environment for all road users. Improvements in the cycling infrastructure (especially the installation of protected bike lanes) reduce hazards not only to cyclists but to pedestrians as well.  相似文献   

7.
OBJECTIVE: This study addresses the biomechanical response of isolated kidneys to traumatic insult. METHODS: Kidneys were subjected to blunt impact by using a freely swinging right cylindrical pendulum. Force-deformation characteristics were derived for 65 impacted adult pig kidneys. Renal injuries were classified by autopsy, and an injury risk analysis was performed. In addition a finite element model that simulated the experiments was implemented. RESULTS/CONCLUSIONS: The kidneys showed a viscoelastic response. An energy-based injury threshold was identified, with a strain energy density of 21 kJ/m(3) corresponding to a 50-percent risk of renal injury level AIS3 or higher. Finally, the impact tests were simulated using a finite element model of the kidney to investigate relevant injury mechanisms. The model predicted the renal capsule and underlying parenchyma to first fail at an impact energy level of 4.0 J, consistent with experimental results.  相似文献   

8.
PROBLEM: The expected substantial increase in people aged 65 or older is important for those concerned about transportation injuries. However, much of the previous research concentrates on older drivers and overlooks the fact that vehicle and crash factors may provide significant explanations of older occupant injury rates. METHOD: Differences across age groups are explored using two nationwide travel surveys, crash involvement, fatalities, and injuries from crash databases and an ordered probit model of injury severity. RESULTS AND DISCUSSION: Two noticeable differences that help explain injury risk are that older people are more likely to travel in passenger cars than younger people who frequently use light trucks, and that seriously injured older occupants are more likely to be involved in side-impact crashes than their younger counterparts. IMPACT: Increased attention to vehicle engagement in side-impact crashes and to vehicle technologies that can help drivers avoid side collisions would be particularly helpful for older occupants.  相似文献   

9.
Objective: A cyclist assumes various cyclic postures of the lower extremities while pushing the pedals in a rotary motion while pedaling. In order to protect cyclists in collisions, it is necessary to understand what influence these postures have on the global kinematics and injuries of the cyclist.

Method: Finite element (FE) analyses using models of a cyclist, bicycle, and car were conducted. In the simulations, the Total Human Model of Safety (THUMS) occupant model was employed as a cyclist, and the simulation was set up such that the cyclist was hit from its side by a car. Three representative postures of the lower extremities of the cyclist were examined, and the kinematics and injury risk of the cyclist were compared to those obtained by a pedestrian FE model. The risk of a lower extremity injury was assessed based on the knee shear displacement and the tibia bending moment.

Results: When the knee position of the cyclist was higher than the hood leading edge, the hood leading edge contacted the leg of the cyclist, and the pelvis slid over the hood top and the wrap-around distance (WAD) of the cyclist's head was large. The knee was shear loaded by the hood leading edge, and the anterior cruciate ligament (ACL) ruptured. The tibia bending moment was less than the injury threshold. When the cyclist's knee position was lower than the hood leading edge, the hood leading edge contacted the thigh of the cyclist, and the cyclist rotated with the femur as the pivot point about the hood leading edge. In this case, the head impact location of the cyclist against the car was comparable to that of the pedestrian collision. The knee shear displacement and the tibia bending moment were less than the injury thresholds.

Conclusion: The knee height of the cyclist relative to the hood leading edge affected the global kinematics and the head impact location against the car. The loading mode of the lower extremities was also dependent on the initial positions of the lower extremities relative to the car structures. In the foot up and front posture, the knee was loaded in a lateral shear direction by the hood leading edge and as a result the ACL ruptured. The bicycle frame and the struck-side lower extremity interacted and could influence the loadings on lower extremities.  相似文献   


10.
OBJECTIVES: To evaluate the factors that might influence an occupant's injury severity during a left turn movement. METHODS: We used the National Automotive Sampling System Crashworthiness Data System (1995-2005) to compare crash characteristics and injury outcome between intersection and midblock left turn collisions. RESULTS: A total of 7,396 collisions were evaluated. Traffic control devices were present in 82% of intersection and 10% of mid-block collisions. After adjustment for potential confounding variables, drivers' injury severity was not significantly associated with the crash location. However, front seat passengers in mid-block collisions had 72% higher odds of experiencing an injury with injury severity score > or =9 (odds ratio: 1.72, 95% confidence interval: 1.09-2.69). Our analysis did not show that drivers or passengers in larger vehicles, e.g., sport utility vehicles and mini-vans, were at lower risk of more severe injuries in comparison to the car occupants in sedans. CONCLUSION: We found that in comparison to intersection-related left turn collisions, mid-block crashes are associated with more severe injuries for front seat passengers. Furthermore, size of the turning vehicle was not significantly associated with injury severity for drivers or front seat passengers.  相似文献   

11.
Objectives: Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates.

Methods: This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82).

Results: Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set.

Conclusions: This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia–fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.  相似文献   

12.
INTRODUCTION: Youth soccer (football) injuries occur for a wide range of reasons, but the most frequent cause of injury is via player-to-player contact. This study was designed to study the ecology of collisions between players during youth soccer play. METHOD: Six teams of 11- and 12-year-old male players were followed over the course of a full season. Games were videotaped and reviewed to address three primary questions: how frequently do player-to-player collisions occur; when and where on the field do those collisions occur; and what is the rate of falls and injuries as a result of player-to-player contact. RESULTS: A total of 1,279 player-to-player collisions was observed, or an average of 65.59 collisions per game. Nearly half of the observed collisions resulted in one or both players falling to the ground, and about one-tenth resulted in the referee calling a foul, but very few of the collisions (less than 1%) resulted in an injury. Collisions occurred relatively consistently throughout the games, no matter what the score was. They occurred most frequently in the midfield area, when the ball was on or near the ground, and when players were attempting to retrieve a loose, uncontrolled ball. CONCLUSIONS: Results are discussed with respect to implications for injury prevention.  相似文献   

13.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   

14.
Introduction: Children and adolescents living with intellectual and developmental disability (IDD) have a higher risk of experiencing morbidities and premature death when compared to children and adolescents living without IDD. Childhood injuries are a leading cause of morbidity and death, yet there are limited studies that explore the prevalence of childhood injuries for individuals living with IDD. The purpose of this study was to analyze Ontario health administrative data to identify and compare rates of injury resulting in hospitalization in children and adolescents living with and without IDD. Methods: This is a cross-sectional study of all Ontarians aged 0–19 years with and without IDD. The outcome of interest was the rate of injury resulting in hospitalization. Results: This study found that children and adolescents with IDD had 1.79 (CI 1.66, 1.92) times higher rates of both intentional and unintentional injuries that resulted in hospitalization when compared to children and adolescents without IDD. Hospitalizations for self-harm related injuries were 3.16 (CI 3.09, 3.23) times higher in the IDD group. Conclusion: Children and adolescents with IDD have a higher risk of sustaining serious injuries, particularly injuries resulting from self-harm. Practical Applications: This study provides evidence of increased injury related hospitalizations for children and adolescents with IDD when compared to their peers without IDD.  相似文献   

15.
Introduction: Although public buses have been demonstrated as a relatively safe mode of transport, the number of injuries to public bus passengers is far from negligible. Existing studies of public bus safety have focused primarily on injuries caused by collisions. Surprisingly, limited effort has been devoted to identifying factors that increase the severity of passenger injuries in non-collision incidents. Method: Our study therefore investigated the injury risk of public bus passengers involved in collision incidents and non-collision incidents comparatively, based on a police-reported dataset of 17,383 passengers injured on franchised public buses over a 10-year period in Hong Kong. A random parameters logistic model was established to estimate the likelihood of fatal and severe injuries to passengers as a function of various factors. Results: Our results indicated substantial inconsistences in the effects of risk factors between models of non-collision injuries and collision injuries. The severity of passenger injuries tended to increase significantly when non-collision incidents occurred due to excessive speed of bus drivers, on double-decker buses, in less urbanized areas, in winter, in heavy rains, during daytime, and at night without street lighting. Elderly female passengers were also found more likely to be fatally or severely injured in non-collision incidents if they lost their balance while boarding, alighting from, or standing on a bus. In comparison, the following factors were associated with a greater likelihood of fatal or severe injuries in collision incidents: elderly female passengers, standing passengers who lost balance, buses out of driver control, double-decker buses, collisions with vehicles or objects, and less urbanized areas. Practical Applications: Based on our comparative analysis, more targeted countermeasures, namely “4E” (engineering, enforcement, emergency, and education) and “3A” (awareness, appreciation, and assistance), were recommended to mitigate collision injuries and non-collision injuries to public bus passengers, respectively.  相似文献   

16.
OBJECTIVE: To evaluate if precrash vehicle movement is associated with the severity of pedestrian injury. METHODS: We used comprehensive information on pedestrian, vehicle, and injury-related characteristics gathered in the Pedestrian Crash Data Study (PCDS), conducted by the National Highway Traffic Safety Administration (NHTSA) (1994-1998). The odds ratio of severe injuries (injury severity score >/= 15) and crash fatality rate for right- and left-turn collisions at intersection compared with straight vehicle movement were compared using a logistic regression model and taking into consideration the type of vehicle and age of the pedestrians as potential effect modifiers. Later we evaluated the intermediate effect of impact speed on the association by adding it to the logistic regression model. RESULTS: Of 255 collisions eligible for this analysis, the proportion of pedestrian hit during straight movement, right turns, and left turns were 48%, 32%, and 10%, respectively. Sixty percent of the pedestrians in left-turn crashes and 67% of them in right-turn collisions were hit from their left side. For straight movements the pedestrians were equally likely to be struck beginning from the left or right side of the street.After adjustment for pedestrian's age, vehicle movement was a significant predictor of severe injuries (p < 0.0001) and case fatality (p = 0.003). The association between vehicle precrash movement and severe injuries (p = 0.551) and case fatality (p = 0.912) vanished after adjusting for impact speed. This indicated that the observed association was probably the result of the difference in impact speed and not the precrash movement of the vehicle. CONCLUSION: Pedestrian safety interventions that aim at environmental modifications, such as crosswalk repositioning, might be the most efficient means in reducing right- or left-turn collisions at intersection, while pedestrians' behavioral modifications should be the priority for alleviating the magnitude of the collisions that happen in vehicles' straight movements.  相似文献   

17.
OBJECTIVE: Previous methods to determine spinal ligament deformation have included either custom-designed transducers or computational methods using rigid body transformation of kinematic data. Goals of the present study were to describe a computational methodology to determine dynamic deformations of an arbitrarily oriented ligament in a spine specimen and its associated errors. METHODS: Calculation of ligament deformation in a spinal segment with vertebral motion tracking flags utilized digital stereophotography, lateral neutral posture radiograph, and detailed quantitative anatomy to develop geometrical relationships between flag markers and ligament attachment points. A custom jig, consisting of two flags each with four markers, was constructed to quantify errors associated with computed ligament deformation, flag marker translation, and flag rotation. RESULTS: Average error in ligament deformation was dependent upon motion direction and ranged between 0.03 mm (SD 0.45 mm) and 0.28 mm (SD 0.18 mm). Average error for flag marker translation ranged between 0.02 mm (SD 0.14 mm) and 0.11 mm (SD 0.39 mm), and for flag rotation ranged between -0.06 degrees (SD 0.17 degrees ) and 0.07 degrees (SD 0.12 degrees ). CONCLUSIONS: Accuracy of the present technique was equivalent to or greater than that of previous methods. The present technique utilized relatively cost-effective digital stereophotography, and may be used to calculate strain in ligaments not readily accessible for transducer application. The methodology has wide-spread applicability for analyses of dynamic or static spinal or other ligament strains, and may be used to determine spinal canal and intervertebral foramen narrowing and area reduction.  相似文献   

18.

Problem

Side impacts are a serious automotive injury problem; they represent about 30% of all fatalities for passenger vehicle occupants. This literature review focuses on occupant injuries resulting from real lateral collisions. It emphasizes the interaction between injury patterns and crash factors, taking into account type of injuries and their severity. It highlights what is known on the subject and suggests further studies.

Method

We reviewed papers identified by searches in two electronic databases for the 1996-2009 publication period, and in specific journals and conference proceedings.

Results

Studies on the Primary Direction of Force (PDOF) have revealed that fatal crashes occur most frequently when the PDOF is at 3 or 9 o'clock. The risk of serious injury is two to three times higher for the near-side occupant than for the far-side occupant. Head injuries predominate in oblique impacts and thoracic injuries in perpendicular ones. A few results are also reported on side airbag protection.

Conclusions

This literature review presents an overall picture of the injuries caused by lateral collisions, though each of the papers or articles examined focuses mostly on some particular aspect of the problem. The incidence of specific injuries depends on the data source used. Very few population-based analyses of lateral collision injuries were found.

Impact on industry

New studies are needed to evaluate new protective devices (e.g., lateral airbags, inflatable curtains). Without interfering with their care duties, Emergency Medical Technicians could be systematically trained to observe the collision's specific characteristics and to report all their relevant observations to the emergency physicians to increase the likelihood of prompt diagnosis and proper care.  相似文献   

19.
20.
OBJECTIVE: The objective of the study was to determine which vehicle factors are significantly related to pelvic injury in side impact collisions. Identification of relevant parameters could aid in the reduction of these injuries. METHOD: Side impact crashes from the CIREN database were separated into those in which the occupant sustained a pelvic fracture and those in which no pelvic fracture occurred, although all occupants had serious injuries. A multibody MADYMO model was created of a USDOT SINCAP (U.S. Department of Transportation Side Impact New Car Assessment Program) test of a vehicle with a large center console. RESULTS: From a study of 113 side impact crashes in the ciren database, nearside occupants with pelvic fractures (n = 78) had (i) more door intrusion (mean, 37 vs. 32 cm, p = 0.02) than those who had serious injuries, but not pelvic fractures (ii) a greater likelihood that the lower border of the door intruded more than the upper part (40% vs. 18%, p < 0.025); and (iii) a greater likelihood that their vehicle had a center console (47 vs. 17%, p < 0.005). Other parameters such as occupant age, weight, gender, vehicle weight, and struck vehicle speed change were not significantly different. MADYMO modeling showed that with a center console, an initial positive pelvic acceleration occurred at about 30 msec, followed at about 45 msec by a second acceleration peak in the opposite direction. Reducing console stiffness reduced the second acceleration but not the initial peak. Allowing the seat to translate laterally when contacted by the door reduced the initial pelvic acceleration by 50% and eliminated the second acceleration peak. CONCLUSIONS: Redesigning the center console using less stiff materials and allowing some lateral translation of the seat could aid in reducing pelvic injuries in side impact collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号