首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The groundwater samples collected from the shallow and deep groundwater aquifers of an industrial area of the Kanpur city (Uttar Pradesh, India) were analyzed for the concentration levels and distribution pattern of nitrogenous species, such as nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonical-nitrogen (NH4-N), organic-nitrogen (Org-N) and total Kjeldahl-nitrogen (TKN) to identify the possible contamination source. Geo-statistical approach was adopted to determine the distribution and extent of the contaminant plume. In the groundwater aquifers NO3-N, NO2-N, NH4-N, TKN, Org-N and Total-N ranged from 0.10 to 64.10, BDL (below detection limit)-6.57, BDL-39.00, 7.84–202.16, 1.39–198.97 and 8.89–219.43 mg l−1, respectively. About 42% and 26% of the groundwater samples of the shallow and deep groundwater aquifers, respectively, exceeded the BIS (Bureau of Indian Standards) guideline value of 10 mg l−1 for NO3-N and may pose serious health hazards to the people of the area. The results of the study revealed that the groundwater aquifers of the study area are highly contaminated with the nitrate and indicates point source pollution of nitrate in the study area.  相似文献   

2.
Assessment of the chemical components of Famenin groundwater,western Iran   总被引:2,自引:0,他引:2  
The Faminin area in the semi-arid Hamadan state, western Iran is facing a serious deficiency in groundwater resources due to an increasing demand associated with rapid population growth and agricultural development. The chemical composition of 78 well samples throughout the Faminin area was determined with the aim of evaluating the concentration of the background ions and identifying the major hydrogeochemical processes that control the groundwater chemistry. The similarity between rock and groundwater chemistries in the recharge area indicates a significant rock-water interaction. The hydrochemical types Na–HCO3 and Na–SO4 are the predominate forms in the groundwater, followed by water types Ca–HCO3 and Na–Cl. The high values of electrical conductivity and high concentrations of Na+, Cl, SO42− and NO3 in the groundwater appeared to be caused by the dissolution of mineral phases and would appeared to be caused by anthropogenic activities, such as intense agricultural practices (application of fertilizers, irrigation practice), urban and industrial waste discharge, among others.  相似文献   

3.
4.
Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate–N pollution is found and distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to evaluate the contamination potential of nitrate–N. The health risk associated with the ingestion of nitrate–N contaminated groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely determined the high strength sources (0.09–2.74 kg/m2/year) of nitrate contaminant located in the west to the north west area and required 2–5 years travel time to reach the monitoring wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate–N release may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater. The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate–N contaminated groundwater showed that the assessed 95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island. Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable use of groundwater resources.  相似文献   

5.
Separation and chemical characterisation of specific compounds responsible for soil water repellency has not previously been achieved. Here we describe the extraction, separation and analysis by gas chromatography-mass spectrometry of organic compounds found in wettable and water repellent sandy soils from the Netherlands and United Kingdom. Fatty acids (C16–C24), amides (C14–C24), alkanes (C25–C33), aldehydes/ketones (C23–C31) and complex ring-containing structures were detected in all samples. We found a greater abundance of high molecular mass polar compounds in the water repellent samples.  相似文献   

6.
Microbial oxidation of organic compounds (including methane), in freshwater sediments, may result in precipitation of carbonates, which may become an important geochemical archive of paleoenvironmental variations. Most probably low δ13C value in calcite in eutrophic systems results from an advanced oxidation of organic compounds in turbulent or/and sulphate-rich conditions. Likewise, high δ13C value in calcite from organic-rich sediments may evidence low redox potential of the freshwater system. Oxidation of methane and organic matter results in significant isotope effects in sulphates dissolved in water. Therefore, to better understand the origin of carbon isotope signal in carbonates, concentration and stable isotope measurements in dissolved sulphate (water column), bubble methane and calcite (freshwater sediments) have been carried out in 24 lakes, 2 ponds and 4 rivers in Poland. The highest concentration of sulphate has been detected in rivers (85.47 SO4 2− mg/l) and an artificial lake (70.30 SO4 2− mg/l) located in the extremely SO4 2−-polluted region called the “Black Triangle”. The lowest concentration of sulphate is found in dystrophic and mountain lakes (from 0.5 SO4 2− to about 3 mg/l). The lowest δ34S(SO4 2−) and δ18O(SO4 2−) values occur in unpolluted lakes in eastern Poland (−0.94 and 1.38‰, respectively). The highest S and O isotopic ratios are found in a polluted lake in western Poland (δ14S(SO4 2)=12.95‰) and in a dystrophic lake in eastern Poland (δ18O(SO4 2) = 16.15‰) respectively. It is proposed that δ34SO4 2− and (18O(SO4 2−) values in lakes represent a good tool to assess and quantify anthropogenic impact by acid precipitation and to monitor variations in the trophic state and redox processes controlled by biodegradation of organic compounds in sediments and water column. In general, increasing depth (up to 12 m) of the water column is associated with decreasing trend the δ13C(CH4) value from about –35 to about –78‰. However, δ13C value in sedimentary calcite (δ13C vary from –10 to 0.5‰) shows opposite trends as compared to the corresponding methane. This is probably due to redox processes and distribution of heavy isotopes between methane and calcite. Likewise, turbulent water (river) show high δ13C value in methane and low δ13C value in calcite—this is probably due to an enhanced oxidation of methane producing 13C-depleted CO2. In contrast to clean lakes, it is observed that an increase of the δ13C(CH4) value occurs with increasing depth of the water column in a strongly SO4 2−-contaminated lake. This is probably due to a loss of biological buffering potential of the lake accompanied by an active oxidation of methane precursors.  相似文献   

7.
The photocatalytic degradation of a sulfonylurea herbicide, cinosulfuron, has been studied in TiO2 aqueous suspensions. A first order kinetic law was found. The influence of the initial concentration of cinosulfuron and of the initial radiant flux on the kinetics were evaluated. The identification of the intermediate products was based on high performance liquid chromatography coupled with mass spectrometry analyses (HPLC-MS). The mineralization of cinosulfuron was traced using ion chromatography and total organic carbon (TOC) measurements. These results indicate that the photocatalytic degradation of cinosulfuron leads to CO2, NO3 and SO4 2− as final products, and in addition cyanuric acid (C3H3O3N3), confirming previous results on triazinic ring-containing compounds. Electronic Publication  相似文献   

8.
The Elqui watershed (northern Chile) constitutes a highly contaminated river system, with arsenic exceeding by up to three orders of magnitude the average for river waters. There are three main reasons that explain this contamination: (1) the regional geology and hydrothermal (mineralizing) processes that developed in this realm during Miocene time; (2) the later unroofing–erosion–oxidation–leaching of As–Cu rich sulfide ores, a process that have been taking place for at least 10,000 years; and last but not least (3) mining activities at the high-altitude (>4000 m above sea level) Au–Cu–As El Indio mine, from the late 1970s onwards. The El Indio mineral deposit hosted large veins of massive sulfides, including the important presence of enargite (Cu3AsS4). The continuous natural erosion of these veins and their host rocks (also rich in As and Cu) during Holocene time, led to important and widespread metal dispersion along the river system. During the studied pre mining period (1975–1977), the high altitude river Toro waters already showed very large As concentrations (0.36–0.52 mg l−1). The initiation of full scale mining at El Indio (1980 onwards) led to an increase of these values, reaching a concentration of 1.51 mg l−1 As in 1995. During the same year other rivers of the watershed reached peak As concentrations of 0.33 (Turbio) and 0.11 mg l−1 (Elqui). These figures largely exceed the USEPA regulations for drinking water (0.01 mg l−1 As), and about 10% of the total As data from the river Elqui (and 70% from the river Turbio) are above the maximum level allowed by the Chilean law for irrigation water (0.1 mg l−1 As).  相似文献   

9.
The contamination of groundwater in the aquifer of the La Llagosta basin (Besòs river basin) due to waste disposal in quarries formerly used for the extraction of dry raw materials has led to the cessation of groundwater extraction for public water supply. The mobilization of pollutants was largely caused by fluctuations in piezometric levels, which led to the washing of buried waste. The hydrogeochemical processes associated with uncontrolled waste disposal in these landfilled areas of the La Llagosta basin aquifer were studied along a flow path that crosses the contaminated area. The PHREEQC code was used to establish the reactions associated with the different mineral phases through inverse modeling. This transport code, ionic exchange phenomena, surface reactions and balance (mineral phase) reactions were used to simulate the dilution phenomenon associated with the pollution after the potential removal of the sources of contamination. One-dimensional advective–dispersive modeling indicates a substantial reduction in Ca, Mg, Na and SO42− within one year and stabilization within four years.  相似文献   

10.
The major inorganic and organic osmolytes responsible for hydrating the oocytes during pre-ovulatory meiotic maturation in autumn- and spring-spawning stocks of Atlantic herring are examined. Despite the ovulated eggs of spring-spawning herring being 1.6- to 2-fold larger than the autumn-spawning stock, the GSI (27 ± 3%) and degree of oocyte hydration (70–72% water) were similar. Normalising the data with respect to dry mass revealed that the physiological mechanisms underlying the maturational influx of water were the same for both classes of egg. Cl, K+ and Pi together with a small pool of free amino acids (FAA) represented the driving forces for oocyte hydration. K+ (autumn and spring) and Pi (spring) maintained their concentrations in the ovulated eggs, while all other ions, including Cl, Na+, NH4 + and Mg2+ were significantly diluted. In contrast the FAA concentration increased during the hydration process. Amongst the inorganic ions, Cl showed the greatest increase in the ovulated eggs. The FAA content doubled from 1.5 to 3.3% of dry mass during oocyte hydration and accounted for 29% of the calculated ovoplasmic osmolality in the ovulated eggs from both autumn- and spring-spawners. This significant osmotic effect of the small pool of FAA was due to the low water content of the benthic eggs. The differential movement of the inorganic and organic osmolytes that underly oocyte hydration in Atlantic herring are discussed in relation to current models of transmembrane ion flux.  相似文献   

11.
Insoluble porous solid functionalized ligand system bearing 2-aminophenylaminopropyl chelating ligand of the general formula P–(CH2)3NH–(C6H4)–NH2 was prepared via the sol–gel process, where P represents [Si–O] n polysiloxane network. First, the 2-aminophenylaminopropylsilane agent was prepared by substitution reaction between 3-chloropropyltrimethoxysilane and 1,2-phenylenediamine, followed by hydrolytic polycondensation between 2-aminophenylaminopropylsilane agent and tetraethylorthosilicate(TEOS). The immobilized 2-aminophenylaminopropylpolysiloxane P–(CH2)3NH–(C6H4)–NH2(P–AphA) was characterized by 13C NMR, XPS, and FTIR. The results showed that 1,2-phenylenediamine groups were introduced onto polysiloxane network. The functionalized ligand system exhibits 90–100% metal uptake capacity for all metal ions except Cd2+. The elemental analysis data and the metal uptake capacities of the immobilized ligand system suggest that over than 90% ligand sites were involved in coordination with metal ions except that of cadmium forming 1:1 metal to ligand ratio complexes.  相似文献   

12.
This article reports the design of 13C-dating, the first method to calculate the relative age of molecular substance homologues occurring in fractions from the same soil sample. Soil is a major carbon pool impacting modern climate by CO2 release and uptake. Molecular substances that sequester carbon in soils are poorly known due to the absence of methods to study molecular-level C dynamics over agricultural time scales, e.g., 0–200 years. Here, I design a method to calculate the relative age of the plant-derived C31 n-alkane occurring in 6 fractions from a soil sample naturally 13C-labelled by maize cropping during 23 years. Soil fractions are the bulk soil extract, two humin-encapsulated fractions and three particle-size fractions. Results show that C31 n-alkane homologues have relative ages ranging from −6.7 years for the humin-encapsulated homologue to +25.1 years for the 200–2,000-μm fraction homologue. Such a wide variation of 31.8 years evidences temporal pools of molecular substances in soil. This finding also reveals that physical encapsulation can strikingly change the dynamics of a single molecular substance. 13C-dating thus allows to assess the carbon storage potential of molecular substances from crop soils. Such knowledge will help to identify molecular compounds, associated soil pools and agricultural practices that favour carbon sequestration. 13C-dating is further applicable to any environmental sample containing organic matter subjected to a 13C isotope shift with time. 13C-dating will also help to study the sequestration and delayed release of chemicals in various disciplines, such as pollutants in environmental sciences, pharmaceuticals in medicine, and nutrients in food science.  相似文献   

13.
Leachates from the El Fraile tailings impoundment (Taxco, Mexico) were monitored every 2 months from October 2001 to August 2002 to assess the geochemical characteristics. These leachates are of interest because they are sometimes used as alternative sources of domestic water. Alternatively, they drain into the Cacalotenango creek and may represent a major source of metal contamination of surface water and sediments. Most El Fraile leachates show characteristics of Ca–SO4, (Ca+Mg)–SO4, Mg–SO4 and Ca–(SO4+HCO3) water types and are near-neutral (pH=6.3–7.7). Some acid leachates are generated by the interaction of meteoric water with tailings during rainfall events (pH=2.4–2.5). These contain variable levels of SO4 2− (280–29,500 mg l−1) and As (<0.01–12.0 mg l−1) as well as Fe (0.025–2352 mg l−1), Mn (0.1–732 mg l−1), Zn (<0.025–1465 mg l−1) and Pb (<0.01–0.351 mg l−1). Most samples show the highest metal enrichment during the dry seasons. Leachates used as domestic water typically exceed the Mexican Drinking Water Guidelines for sulfate, hardness, Fe, Mn, Pb and As, while acidic leachates exceed the Mexican Guidelines for Industrial Discharge Waters for pH, Cu, Cd and As. Speciation shows that in near-neutral solutions, metals exist mainly as free ions, sulfates and bicarbonates, while in acidic leachates they are present as sulfates and free ions. Arsenic appears as As(V) in all samples. Thermodynamic and mineralogical evidence indicates that precipitation of Fe oxides and oxyhydroxides, clay minerals and jarosite as well as sorption by these minerals are the main processes controlling leachate chemistry. These processes occur mainly after neutralization by interaction with bedrock and equilibration with atmospheric oxygen.  相似文献   

14.
Carbon isotope differences (Δ13C) between bioapatite and diet, collagen and diet, and bioapatite and collagen were calculated for four species of sirenians, Dugong dugon (Müller), Trichechus manatus (Linnaeus), Trichechus inunguis (Natterer), and the extinct Hydrodamalis gigas (Zimmerman). Bone and tooth samples were taken from archived materials collected from populations during the mid eighteenth century (H. gigas), between 1978 and 1984 (T. manatus, T. inunguis), and between 1997 and 1999 (D. dugon). Mean Δ13C values were compared with those for terrestrial ungulates, carnivores, and six species of carnivorous marine mammals (cetaceans = 1; pinnipeds = 4; mustelids = 1). Significant differences in mean δ13C values among species for all tissue types were detected that separated species or populations foraging on freshwater plants or attached marine macroalgae (δ13C values < −6‰; Δ13Cbioapatite–diet ∼14‰) from those feeding on marine seagrasses (δ13C values > −4‰; Δ13Cbioapatite–diet ∼11‰). Likewise, Δ13Cbioapatite–collagen values for freshwater and algal-foraging species (∼7‰) were greater than those for seagrass-foraging species (∼5‰). Variation in Δ13C values calculated between tissues and between tissues and diet among species may relate to the nutritional composition of a species’ diet and the extent and type of microbial fermentation that occurs during digestion of different types of plants. These results highlight the complications that can arise when making dietary interpretations without having first determined species-specific Δ13Ctissue–diet values. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
R. D. Vetter  B. Fry 《Marine Biology》1998,132(3):453-460
Total sulfur (STOT), elemental sulfur (S°) and sulfur-isotope compositions (δ34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S° was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S° contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. δ34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10‰)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and δ34S values less than +5‰ can be used to infer a thiotrophic mode of nutrition. Received: 2 October 1997 / Accepted: 8 June 1998  相似文献   

16.
Arsenic contamination in groundwater is of increasing concern because of its high toxicity and widespread occurrence. This study is an effort to trace the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain of India through major ion chemistry, arsenic speciation, sediment grain-size analyses, and multivariate statistical techniques. The study focuses on the distinction between the contributions of natural weathering and anthropogenic inputs of arsenic with its spatial distribution and seasonal variations in the plain of the state Bihar of India. Thirty-six groundwater and one sediment core samples were collected in the pre-monsoon and post-monsoon seasons. Various graphical plots and statistical analysis were carried out using chemical data to enable hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. Results suggest that the groundwater is characterized by slightly alkaline pH with moderate to strong reducing nature. The general trend of various ions was found to be Ca2+ > Na+ > Mg2+ > K+ > NH4 +; and HCO3  > Cl > SO4 2− > NO3  > PO4 3− > F in both seasons. Spatial and temporal variations showed a slightly higher arsenic concentration in the pre-monsoon period (118 μg/L) than in the post-monsoon period (114 μg/L). Results of correlation analyses indicate that arsenic contamination is strongly associated with high concentrations of Fe, PO4 3−, and NH4 + but relatively low Mn concentrations. Further, the enrichment of arsenic is more prevalent in the proximity of the Ganges River, indicating that fluvial input is the main source of arsenic. Grain size analyses of sediment core samples revealed clay (fine-grained) strata between 4.5 and 7.5 m deep that govern the vertical distribution of arsenic. The weathering of carbonate and silicate minerals along with surface-groundwater interactions, ion exchange, and anthropogenic activities seem to be the processes governing groundwater contamination, including with arsenic. Although the percentage of wells exceeding the permissible limit (50 μg/L) was less (47%) than that reported in Bangladesh and West Bengal, the percentage contribution of toxic As(III) to total arsenic concentration is quite high (66%). This study is vital considering that groundwater is the exclusive source of drinking water in the region and not only makes situation alarming but also calls for immediate attention.  相似文献   

17.
The bioavailability of arsenic (As) in the soil environment is largely governed by its adsorption–desorption reactions with soil constituents. We have investigated the sorption–desorption behaviour of As in four typical Bangladeshi soils subjected to irrigation with As-contaminated groundwater. The total As content of soils (160 samples) from the Laksham district ranged from <0.03 to approximately 43 mg kg−1. Despite the low total soil As content, the concentration of As in the pore water of soils freshly irrigated with As-contaminated groundwater ranged from 0.01 to 0.1 mg l−1. However, when these soils were allowed to dry, the concentration of As released in the pore water decreased to undetectable levels. Remoistening of soils to field moisture over a 10-day period resulted in a significant (up to 0.06 mg l−1) release of As in the pore water of soils containing >10 mg As kg−1 soil, indicating the potential availability of As. In soils containing <5 mg As kg−1, As was not detected in the pore water. A comparison of Bangladeshi soils with strongly weathered long-term As-contaminated soils from Queensland, Australia showed a much greater release of As in water extracts from the Australian soils. However, this was attributed to the much higher loading of As in these Australian soils. The correlation of pore water As with other inorganic ions (P, S) showed a strongly significant (P < 0.001) relationship with P, although there was no significant relationship between As and other inorganic cations, such as Fe and Mn. Batch sorption studies showed an appreciable capacity for both AsV and AsIII sorption, with AsV being retained in much greater concentrations than AsIII.  相似文献   

18.
The Salí River Basin in north-west Argentina (7,000 km2) is composed of a sequence of Tertiary and Quaternary loess deposits, which have been substantially reworked by fluvial and aeolian processes. As with other areas of the Chaco-Pampean Plain, groundwater in the basin suffers a range of chemical quality problems, including arsenic (concentrations in the range of 12.2–1,660 μg L−1), fluoride (50–8,740 μg L−1), boron (34.0–9,550 μg L−1), vanadium (30.7–300 μg L−1) and uranium (0.03–125 μg L−1). Shallow groundwater (depths up to 15 m) has particularly high concentrations of these elements. Exceedances above WHO (2011) guideline values are 100% for As, 35% for B, 21% for U and 17% for F. Concentrations in deep (>200 m) and artesian groundwater in the basin are also often high, though less extreme than at shallow depths. The waters are oxidizing, with often high bicarbonate concentrations (50.0–1,260 mg L−1) and pH (6.28–9.24). The ultimate sources of these trace elements are the volcanic components of the loess deposits, although sorption reactions involving secondary Al and Fe oxides also regulate the distribution and mobility of trace elements in the aquifers. In addition, concentrations of chromium lie in range of 79.4–232 μg L−1 in shallow groundwater, 129–250 μg L−1 in deep groundwater and 110–218 μg L−1 in artesian groundwater. All exceed the WHO guideline value of 50 μg L−1. Their origin is likely to be predominantly geogenic, present as chromate in the ambient oxic and alkaline aquifer conditions.  相似文献   

19.
The water chemistry of 20 municipal water treatment plants in southern Sweden, representing various bedrock situations, and water qualities, were investigated. Four water samples, raw and treated, were collected from each plant and analyzed by predominantly ICP-OES and ICP-MS at four occasions from June to December, 2001. The concentrations of Ca, Mg, K, Na, HCO3 and a number of micronutrients, varied considerably in treated waters from the studied plants (ranges; Ca: 9.1–53.7 mg L−1, Mg: 1.4–10.9 mg L−1, K: 1.1–4.8 mg L−1, Na; 5.4–75.6 mg L−1, HCO3: 27–217 mg L−1). The elimination of Fe and Mn from raw water was efficient in all treatments investigated, giving concentrations in treated waters below the detection limits at some plants. Softening filters gave waters with Ca-concentrations comparable to the softest waters in this study. Adjustment of pH by use of chemicals like lye, soda or lime, modified the consumer water composition significantly, besides raising the pH. It was estimated that drinking water contributed to approximately 2.2–13% of the daily Ca uptake, if the gastrointestinal uptake efficiency from food and water was estimated to be around 50%. The corresponding figures for Mg was 1.0–7% and for F 0–59%. None of the studied elements showed any significant time trends in raw or treated waters during the follow-up period. The concentrations of potentially toxic metals such as Al, Pb and U were low and did not indicate risks for adverse health effects (ranges; Al: 0.5–2.3 μg L−1, Pb: 0–0.3 μg L−1, U: 0.2.5 μg L−1).  相似文献   

20.
Spatial and temporal distributions of water quality using multivariate statistical techniques for the evaluation of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, SiO4-Si, total N, total P) in relation to some physico-chemical features (DO, BOD, TSS, TDS, SO42−, Cl) were studied for 31 different stations of the Mahanadi river–estuarine system in the eastern part of India. The seasonal nutrient variations (except SiO4-Si) exhibit higher values during monsoon season in unpolluted stations and the reverse trends for polluted stations, which are related to agricultural run-off and regional anthropogenic activities respectively. Silicate shows a well defined pattern of distribution with a higher concentration during the monsoon, which is slightly removed from the estuarine water of Mahanadi during the pre-monsoon season. The results of R-mode factor analyses revealed that anthropogenic contributions are responsible for the increase in nutrients and the decrease in DO and pH levels of the water. The magnitude of BOD with respect to total N and P demonstrates the intensity of organic pollution in the system. The removal of silicate in the saline system is clearly visible through factor analysis and the different mode of association of TSS is reflected seasonally. The relationships among the stations are highlighted by cluster analysis, represented in dendograms to categorize different levels of contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号