首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
垃圾填埋场甲烷氧化菌及甲烷通量的研究   总被引:1,自引:0,他引:1  
采用静态箱法、滚管计数法和气相色谱法,对6个不同封场时间填埋区的甲烷通量、覆土层甲烷氧化菌数量和甲烷氧化速率的变化趋势进行了测定,并分析了它们与封场时间、植被覆盖率等因素之间的相关性。结果发现6个填埋区甲烷通量的变化范围在-0.34~5.31 mg/(m2.h)之间;覆土层甲烷氧化菌的数量范围为3.10×107~20.77×107 cfu/g干土,甲烷氧化速率在1.65×10-8~4.34×10-8mol/(h.g)之间。覆土层甲烷氧化菌的数量与甲烷氧化速率呈正相关,但前者并不是后者的决定性因素;甲烷通量高时可刺激甲烷氧化菌数量及氧化速率的提高,且三者均与封场时间呈显著负相关,与植被覆盖率呈负相关;当含水率大于15%时,随着覆土层含水率的增加,甲烷氧化速率呈下降趋势;覆土pH、有机质和铵态氮与甲烷氧化速率等无明显相关性。提高覆土层的甲烷氧化速率可有效减少垃圾填埋场的甲烷排放。  相似文献   

2.
Methane oxidation fluxes were monitored with the closed chamber method in eight treatment plots on a semi-wet grassland site near Giessen, Germany. The management regimes differed in the amount of nitrogen (NH4NO3) fertilizer applied and in the height of the in-ground water table. No inhibition of CH4 oxidation occurred, regardless of the amount of annual N fertilizer applied. Instead, the mean CH4 consumption rates were correlated with the mean soil moisture of the plots. However, the correlation between daily soil water content and corresponding CH4 oxidation rate was always weak. During drought period (late summer) water stress was observed to restrict CH4 oxidation rates. The findings led to the question whether methane production with soil depth might modify the CH4 fluxes measured at the surface. Therefore, two new methods were applied: (1) soil air sampling with silicone probes; and (2) anaerobic incubations of soil cores to test for the methane production potential of the grassland soil. The probe measurements revealed that the CH4 sink capacity of a specific site was related to the vertical length of its CH4 oxidizing column, i.e. the depth of the CH4 producing horizon. Anaerobically incubated soil cores produced large amounts of CH4 comparable with tropical rice paddy soil. Under field conditions, heavy autumnal rain in 1998 led to a dramatic increase of soil CH4 concentrations upto 51 microliters l-1 at a depth of 5 cm. Nevertheless, no CH4 was released when soil surface CH4 fluxes were measured simultaneously. The results thus demonstrate the high CH4 oxidation potential of the thin aerobic topsoil horizon in a non-aquatic ecosystem.  相似文献   

3.
Hegde U  Chang TC  Yang SS 《Chemosphere》2003,52(8):1275-1285
To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.  相似文献   

4.
Abstract

The attenuation of methane and seven volatile organic compounds (VOCs) was investigated in a dynamic methane and oxygen counter gradient system simulating a landfill soil cover. The VOCs investigated were: Tetrachloromethane (TeCM), trichloromethane (TCM), dichloromethane (DCM), trichloroethylene (TCE), vinyl chlo-ride (VC), benzene, and toluene. Soil was sampled at Skellingsted landfill, Denmark. The soil columns showed a high capacity for methane oxidation, with oxidation rates up to 184 g/m2/d corresponding to a 77% reduction of inlet methane. Maximal methane oxidation occurred at 15–20 cm depth, in the upper part of the column where there were overlapping gradients of methane and oxygen. All the chlorinated hydrocarbons were degraded in the active soil columns with removal efficiencies higher than 57%. Soil gas concentration profiles indicated that the removal of the fully chlorinated compound TeCM was because of anaerobic degradation, whereas the degradation of lower chlorinated compounds like VC and DCM was located in the upper oxic part of the column. Benzene and toluene were also removed in the active column. This study demonstrates the complexity of landfill soil cover systems and shows that both anaerobic and aerobic bacteria may play an important role in reducing the emission of trace components into the atmosphere.  相似文献   

5.
Peat cores from six ombrotrophic bogs at different latitudes in Norway (58 degrees N-69 degrees N) were analysed for Hg by atomic fluorescence spectrometry. In all cases a smooth decrease of Hg with depth was observed down to 15-20 cm. At greater depths Hg showed a relatively constant level of the order of 10% of that in the peat surface layer. In the surface peat Hg concentrations exhibit moderate variation with latitude. The pre-industrial levels of Hg in the peat correspond to a net annual Hg accumulation of 0.3-0.9 microgm(-2). The Hg accumulation over the last 100 years is about 15 times higher on average than the pre-industrial level. The present work supports the view that a major part of the present atmospheric Hg in the Northern Hemisphere is of anthropogenic origin. It is speculated that the comparatively high Hg contemporary accumulation rates observed at the And?ya bog on 69 degrees N may be related to the Arctic springtime depletion of Hg.  相似文献   

6.
Methane emissions from the peat bogs in Connemara, Ireland have been inferred from the trace gas observations at the Mace Head Atmospheric Research Station using the nocturnal box method. A total of 237 local events, during April to September, over a 12-year period have been studied. Simultaneous emissions of methane, carbon dioxide and chloroform are routinely observed under nocturnal inversions with low wind speeds from the peat bogs proximal to Mace Head. Night-time deposition of ozone and hydrogen occurs concurrently with these emissions. Using the temporally correlated methane and ozone data we estimate methane emissions from each event. Simultaneous methane and chloroform emissions, together with ozone and hydrogen deposition have been characterised, leading to the estimation of methane emission rates for each event. The mean methane emission flux was found to be 400 ± 90 ng m?2 s?1. A strong seasonal cycle was found in the methane emission fluxes but there was little evidence of a long-term trend in the emissions from the peat bogs in the vicinity of the Mace Head station.  相似文献   

7.
Biodegradation of trace gases in simulated landfill soil cover systems   总被引:1,自引:0,他引:1  
The attenuation of methane and seven volatile organic compounds (VOCs) was investigated in a dynamic methane and oxygen counter gradient system simulating a landfill soil cover. The VOCs investigated were: Tetrachloromethane (TeCM), trichloromethane (TCM), dichloromethane (DCM), trichloroethylene (TCE), vinyl chloride (VC), benzene, and toluene. Soil was sampled at Skellingsted landfill, Denmark. The soil columns showed a high capacity for methane oxidation, with oxidation rates up to 184 g/m2/d corresponding to a 77% reduction of inlet methane. Maximal methane oxidation occurred at 15-20 cm depth, in the upper part of the column where there were overlapping gradients of methane and oxygen. All the chlorinated hydrocarbons were degraded in the active soil columns with removal efficiencies higher than 57%. Soil gas concentration profiles indicated that the removal of the fully chlorinated compound TeCM was because of anaerobic degradation, whereas the degradation of lower chlorinated compounds like VC and DCM was located in the upper oxic part of the column. Benzene and toluene were also removed in the active column. This study demonstrates the complexity of landfill soil cover systems and shows that both anaerobic and aerobic bacteria may play an important role in reducing the emission of trace components into the atmosphere.  相似文献   

8.
During the winter of 1985-86 the authors took 6-h integrated air samples and measured the concentrations of carbon monoxide and other gases at a residential site in Olympia, Washington. The 6-h average concentrations were between about 0.2 and 3.2 ppmv. For each 6-h period the observed concentration of CO was apportioned among its sources which were residential wood burning and automobiles. Small and generally insignificant amounts of CO were also observed from unidentified sources. A chemical mass balance (CMB) was formulated and applied to apportion the observed CO among its sources. Methylchloride (CH3CI), in excess of background levels, was used as a unique tracer of wood burning and excess hydrogen (H2) served as a tracer of CO from automobiles. The source emission factors to carry out the calculations were estimated from other experiments. The results showed that in Olympia, wood burning can often contribute as much CO as automobiles during winter. The maximum 6-h average contribution of CO from wood burning was about 2 ppmv and from automobiles it was 2.2 ppmv, and the average ambient concentration was about 1 ppmv. When pollution from wood burning was present, it contributed 0.5 ppmv on average while automobiles also contributed 0.5 ppmv. Unidentified sources contributed 0.1 ppmv and the background level was 0.15 ppmv. During the winter many times wood burning did not affect CO concentrations, while CO from automobiles was always present. On average, during the winter, automobiles contributed some 50 percent of the CO mass to the lower urban atmosphere and wood burning contributed about 30 percent. Diurnal cycles became evident in the calculated concentrations of CO from wood burning and automobiles even though the measured concentrations did not show strong diurnal variations. Wood burning contributed most during evening and nighttime and very little during the day, while automobiles contributed most during the morning and evening hours and very little at night. These patterns lend support to the accuracy of the model and source emission factors since they are as expected from the diurnal variations of the sources and atmospheric mixing.  相似文献   

9.
Castaldi S  Tedesco D 《Chemosphere》2005,58(2):131-139
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.  相似文献   

10.
Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g(-1) dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g(-1) dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g(-1) dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere.  相似文献   

11.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

12.
Abstract

Wheat is more sensitivity to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 μg/g Cd at the Cd 10,000 ppm in soil. This value is higher the value of 4.97 μg/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, as concentration of more than 1.0 μg/g Cd in wheat was obsertced at 5 ppm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.  相似文献   

13.
Biodegradation of undecylbenzenesulphonate (C(11)LAS) was performed in shake flasks at 21 degrees C by using a mixed methanotrophic-heterotrophic culture containing type II methanotrophs. Concentrations of C(11)LAS and aromatic intermediates were determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Methane and carbon dioxide concentrations were measured in headspace samples by using gas chromatography. RP-HPLC analyses of aqueous samples show that the culture MM1 expresses the capability of C(11)LAS transformation in the presence or absence of methane. Simultaneous methane oxidation and C(11)LAS degradation, and the inhibition of both transformation processes by acetylene were observed. This suggests the possibility that C(11)LAS transformation is catalyzed by methane monooxygenase (MMO). Comparable affinity of culture MM1 for both methane and C(11)LAS ( [Formula: see text], respectively), and more than four times higher maximum transformation rate for methane than for C(11)LAS ( [Formula: see text] (dry weight) cells day(-1), respectively), were determined. This further supports the involvement of MMO enzyme system in transformation and suggests a pronounced competitive inhibition of C(11)LAS degradation by methane.  相似文献   

14.
Wheat is more sensitive to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 micrograms/g Cd at the Cd 10,000 ppm in soil. This value is higher than the value of 4.97 micrograms/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, concentration of more than 1.0 micrograms/g Cd in wheat was observed at 5 pm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.  相似文献   

15.
M. Baumg  rtner  E. Bock  R. Conrad 《Chemosphere》1992,24(12):1943-1960
Atmospheric NO2 was taken up by samples of various soils and building stones. The NO2 uptake rate constants were highest in soil samples taken during the summer months. However, the NO2 uptake rate constants of the soils and building stones were not significantly correlated with any of the following variables: moisture, pH, ammonium, nitrite, or nitrate. NO2 uptake by soil and stone was not abolished by autoclaving indicating a chemical uptake process. NO2 uptake by acidic and air-dry soils and stones resulted in nearly stoichiometric reduction of NO2 to NO. This reduction was enhanced by the addition of ferrous iron and was further enhanced by incubation under 1 ppmv SO2. The results suggest that NO2 reduction may be coupled to oxidation of ferrous to ferric iron which may be reduced again by atmospheric SO2 thus regenerating the ferrous iron content of the soil or stone. Conversion of NO2 to NO was not observed in neutral or/and moist soils and stones. NO2 was also taken up by purified and sterilized quartz sand moistend with water. This uptake was enhanced by addition of humic material but not by addition of bacteria which both had been extracted from genuine soil. Under most conditions, only uptake but no release of NO2 was observed. However, NO2 was released in air-dry soils that were heated to 45–65°C, or in ammonium-fertilized soil or stone that was drying up at room temperature. Under the latter conditions mimicking field practice, the NO2 release reached rates that were similar to the NO release rates.  相似文献   

16.
To find out microbial metabolic functioning and toxicity in a former sawmill area, carbon dioxide evolution, methane oxidation potential, 10 hydrolytic enzyme activities, Vibrio fischeri test, fluorescein diacetate hydrolysis activity (FDA), soil pH, carbon, nitrogen and pentachlorophenol (PCP) content were measured at four sites. The area is contaminated with aged chlorophenols. Chlorophenol content of soil was analyzed with a novel HPLC-MS technique, which allowed to measure chlorophenols without derivatization. The sites had a pollution gradient from 0.5 to 15 microg PCP g dw of soil(-1). Endogenous carbon dioxide evolution, methane oxidation potential, butyrate-esterase, acetate-esterase, sulphatase and aminopeptidase activities were lower at the site 2 than 3, although the site 2 and 3 had similar content of carbon and nitrogen. The soil was toxic in V. fischeri test at the site 2, which had high content of PCP (3.93+/-1.00 microg PCP g dw of soil(-1)). The results indicated that endogenous carbon dioxide evolution, methane oxidation potential, butyrate-esterase, acetate-esterase, sulphatase and aminopeptidase activities were sensitive to PCP in the soil. The results indicated that alpha-glucosidase, beta-glucosidase, beta-xylosidase, beta-cellobiosidase, phosphomonoesterase, N-acetyl-glucosaminidase activity and FDA hydrolysis activity were not sensitive to PCP in the soil. Soil processes involved in the cycling of carbon, nitrogen, sulphur and phosphorus were only slightly vulnerable in the former sawmill area and most sensitive microbial species were probably replaced with more tolerant ones to maintain and recover functioning of the former sawmill soils.  相似文献   

17.
Dissolved hydrogen concentrations are used to characterize redox conditions of contaminated aquifers. The currently accepted and recommended bubble strip method for hydrogen sampling (Wiedemeier et al., 1998) requires relatively long sampling times and immediate field analysis. In this study we present methods for optimized sampling and for sample storage. The bubble strip sampling method was examined for various flow rates, bubble sizes (headspace volume in the sampling bulb) and two different H2 concentrations. The results were compared to a theoretical equilibration model. Turbulent flow in the sampling bulb was optimized for gas transfer by reducing the inlet diameter. Extraction with a 5 mL headspace volume and flow rates higher than 100 mL/min resulted in 95-100% equilibrium within 10-15 min. In order to investigate the storage of samples from the gas sampling bulb gas samples were kept in headspace vials for varying periods. Hydrogen samples (4.5 ppmv, corresponding to 3.5 nM in liquid phase) could be stored up to 48 h and 72 h with a recovery rate of 100.1+/-2.6% and 94.6+/-3.2%, respectively. These results are promising and prove the possibility of storage for 2-3 days before laboratory analysis. The optimized method was tested at a field site contaminated with chlorinated solvents. Duplicate gas samples were stored in headspace vials and analyzed after 24 h. Concentrations were measured in the range of 2.5-8.0 nM corresponding to known concentrations in reduced aquifers.  相似文献   

18.
Abstract

Although aldehydes contribute to ozone and particulate matter formation, there has been little research on the biofiltration of these volatile organic compounds (VOCs), especially as mixtures. Biofiltration degradation kinetics of an aldehyde mixture containing hexanal, 2-methylbutanal (2-MB), and 3-methylbutanal (3-MB) was investigated using a bench-scale, synthetic, media-based biofilter. The adsorption capacity of the synthetic media for a model VOC, 3-methylbutanal, was 10 times that of compost. Periodic residence time distribution analysis (over the course of 1 yr) via a tracer study (84–99% recovery), indicated plug flow without channeling in the synthetic media and lack of compaction in the reactor. Simple first-order and zero-order kinetic models both equally fit the experimental data, yet analysis of the measured rate constants versus fractional conversion suggested an overall first-order model was more appropriate. Kinetic analysis indicated that hexanal had a significantly higher reaction rate (k = 0.09 ± 0.005 1/sec; 23 ± 1.3 ppmv) compared with the branched aldehydes (k = 0.04 ± 0.0036 1/sec; 31 ± 1.6 ppmv for 2-MB and 0.03 ± 0.0051 1/sec; 22 ± 1.3 ppmv for 3-MB). After 3 months of operation, all three compounds reached 100% removal (50 sec residence time, 18–46 ppmv inlet). Media samples withdrawn from the biofilter and observed under scanning electron microscopy analysis indicated microbial growth, suggesting removal of the aldehydes could be attributed to biodegradation.  相似文献   

19.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

20.
用洛阳铲采集某地区10座地下贮罐罐龄接近或超过10年的典型加油站场地不同深度土样,并分别用吹脱/捕集/热脱附/气相色谱法和快速溶剂萃取/硅酸镁净化/气相色谱法分析样品中的挥发性和萃取性石油烃,发现2座加油站疑似油品渗漏,其中1座为柴油渗漏,地下贮罐附近1.2 ~3.0 m深度土壤总石油烃含量16.1 ~24.6 g/kg,均超过荷兰土壤清除标准,另1座为汽油和柴油混合渗漏,其地下贮罐附近2.4m深度土壤总石油烃含量较高,但未超标.个别加油站场地较高的土壤天然有机物背景值可能计入EPH的分析结果,但其色谱指纹明显不同于石油烃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号