首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abundance (catch per unit effort, n=3752) and population structure of perch Perca fluviatilis were studied in 30 acidic Norwegian lakes with relation to pH (4.3-5.9), calcium (0.41-2.44 mg litre(-1)), labile aluminium (24-255 microg litre(-1)) and total organic carbon (TOC, 1.7-13.8 mg C litre(-1)). Standard series of bottom gill-nets were used to sample fish populations. A multiple regression analysis showed that abundance was significantly correlated to TOC (P<0.05) and, to a smaller extent, to the Ca in lakes with concentrations between 0.41 and 1.70 mg litre(-1) (P=0.07). The lakes which were inhabited by pike were excluded from the analysis. Recruitment failure seems to be the main cause of reductions in perch numbers in the lakes studied. However, high mortality among adult individuals was also evident, and an episode of fish kill was observed in one of the lakes.  相似文献   

2.
Little Rock Lake, a small (18 ha), low-alkalinity (25 microeq litre(-1), pH 6.1) seepage lake in northern Wisconsin, was divided into two basins by a flexible, inert barrier and, beginning in spring 1985, the north basin was acidified in three 2-year steps to pH 5.6, 5.1 and 4.7. The annual average pH of the reference basin remained near 6.1. As part of a comprehensive programme to determine the chemical and biological responses to acidification, minor metals (Al, Fe, Mn) and trace metals (Cd, Cu, Pb, Zn) in lake water (0.4 microm pore filtered samples), periphyton, zooplankton, and yellow perch (Perca flavescens) were measured. At pH 5.6, dissolved Mn and Fe increased in the acidified basin. At pH 5.1 and 4.7, dissolved Al, Fe, Mn, Cd and Zn were elevated in the acidified basin. At pH 4.7, dissolved Pb in the acidified basin became elevated over reference basin levels. Dissolved Cu remained similar in both basins down to pH 4.7. Cd burdens in periphyton collected on artificial substrates were lower in the treatment basin at pH 5.1 (1.8 microg g(-1) dry wt.) than in the reference basin at pH 6.1 (7.5 microg g(-1) dry wt.), but Al and Fe burdens in periphyton were similar in both basins. Likewise, Cd levels in muscle tissue of perch from the treatment basin at pH 4.7 were lower (26 ng g(-1) dry wt.) than in the reference basin at pH 6.1 (36 ng g(-1) dry wt.); Al and Fe burdens were similar in perch muscle tissue from both basins. Levels of Cd and Fe in zooplankton from the acidified basin at pH 4.7 were approximately equal to 2x higher than in animals from the reference basin. In both basins of the lake, Al and Cd levels in lake biota decreased with increasing trophic level, demonstrating that food chain biomagnification does not occur for these metals.  相似文献   

3.
Darwin National Reserve is a protected natural area on the north-west shore of the Rybinsk Reservoir, 350 km north of Moscow. In June 1989, six lakes in the Reserve and the reservoir were surveyed to assess lake acidity and the mercury content of perch, Perca fluviatilis. Five were seepage lakes with no permanent inlets or outlets and one was a drainage lake with both an inlet and an outlet. The seepage lakes were acidic (mean pH 4.6-4.8) and varied in colour from 20 to 200 Hazen units. The drainage lake and reservoir were alkaline (mean pH 8.0-8.1) and colour spanned a similar range. The mean mercury content of perch dorsal epaxial muscle ranged from 0.5 to 1.1 microg g(-1) wet weight in the five acidic lakes and from 0.1 to 0.2 microg g(-1) in the alkaline lakes. Fish mercury content was negatively correlated with lake pH (r=-0.93, P=0.002) if all waters were considered together, and positively correlated with apparent colour (r=0.91, P=0.03) in the seepage lakes.  相似文献   

4.
Chemical and biological responses to simultaneous additions of acid, aluminium and lime were investigated in contiguous 250m-reaches of a chronically acidic stream in Wales. Treatments were applied for 24 h, and from the upstream end were as follows: zone A-untreated, pH 5.0, 0.37 mg litre(-1) filterable Al; zone B-acidified to pH 4.5, 0.40 mg Al litre(-1) (47% of Al attributed to release from the stream bed due to acid additions); zone C-acidified to pH 4.5 and Al dosed to 0.67 mg litre(-1); zone D-dosed with limestone slurry, resulting in pH 7.2, 0.13 mg Al litre(-1). In all reaches, the chemistry of the interstitial water at depths of 0.15 and 0.3 m never fell below pH 5.5, with corresponding decreases in Al and increases in base cation concentrations. Brown trout, Salmo trutta, and crayfish, Austropotamobius pallipes, held in the stream showed decreases in plasma [Na(+)] and haemolymph [Na(+)], respectively, in all acidic zones (A, B, C): these responses were mitigated by liming (zone D). Thus both chronic and simulated episodic levels of pH and dissolved Al were sub-lethally toxic to test species of aquatic fauna. This experiment also demonstrates a stream bed source/sink of Al, and the availability of a possible refuge from acidic surface waters within the substratum.  相似文献   

5.
Two headwater streams with low DOC and different pHs (4.5-4.8 and 5-6.5) were acidified with H2SO4 to pH 4.1 and 4.5, respectively, for 24-h periods. Neutralization of the added acid occurred by protonation of ANC (HCO3-dominated in the higher pH stream), desorption of Ca (< 15 microeq litre(-1)) and Mg (<6 microeq litre(-1)), and desorption and dissolution of AL (<250 microg litre(-1)) from the stream bed. The concentrations of dissolved organic carbon (DOC) remained constant within the experimental reaches. The concentrations of Na, K an H4SiO4 also remained constant, indicating no detectable increase in the rate of chemical weathering in the stream bed. After acid addition was stopped, concentrations of Ca, Mg and Al decreased to below background, indicating reversible ion exchange as the principal mechanism for the mobility of Ca and Mg and to a lesser extent for Al. Repeated acidifications indicated that significant regeneration of cations on the exchange surfaces of the stream substrate occurs rapidly.  相似文献   

6.
Ca, P, Al, and trace metal (Cu, Ni, Zn, Cd, and Pb) concentrations were measured in several aquatic invertebrate taxa used as food by breeding insectivorous waterfowl, sampled from three sites in eastern Canada with widely varying water chemistry. Ca concentrations were highest in molluscs (snails and clams), averaging 200-300 mg g(-1) (shells included). Aquatic insects of varying sizes, life stages and habits (caddisfly larvae, dragonfly larvae, adult backswimmers, waterstriders, and whirligig beetles) had much lower mean Ca concentrations, ranging from about 0.6 mg g(-1) (beetles) to 1.8 mg g(-1) (caddisflies). Invertebrate-Ca concentrations decreased with increasing body mass for several taxa, with smaller and larger individuals providing similar absolute amounts of Ca. Ca concentrations in most aquatic insects (but not molluscs) were reduced under acidic, low Ca, high Al, low dissolved organic carbon (DOC) and/or low total phosphorus (TP) conditions. In stepwise multiple regressions, pH was consistently the main factor explaining variability in invertebrate-Ca, after controlling for the negative relationship between invertebrate-Ca and body mass for some taxa. Molluscs were absent from lakes below pH 5.3. In general, concentrations of P and metals in invertebrate taxa were not significantly correlated with lake pH. Levels of Al, Cd, or Pb were not sufficiently high to be considered toxic to potential consumers of these organisms. For waterfowl and other birds breeding in acid-stressed habitats and relying on aquatic invertebrates as a source of food, a reduced availability of dietary Ca is more likely than an increased exposure to toxic metals to negatively affect reproductive success, especially when other adverse effects of acidification (lower diversity of prey) are considered.  相似文献   

7.
Fifty-six headwater Canadian Shield lakes were repetitively sampled from 1979 to 88 to determine their response to changes in acidic deposition of the period. Annual wet sulphate loadings varied between 38 and 83 meq m(-2), with highest deposition in the late 1970s followed by somewhat lower but variable deposition in the 1980s. Median pH of the lakes increased 0.42 pH units from 1979 to 1985 and decreased by 0.15 units between 1985 and 1988. Short water renewal times (x=1.1 y) promoted rapid equilibration. Since lake were so responsive to changes in SO4(2-) inputs, they were at or near steady state at all times. Comparison of predicted original pH and ANC with 1979 data indicate a median decline of 0.45 pH units and a loss of 34 microeq litre(-1). ANC. Four of 9 lakes were found to be historically fishless, based on the continued presence of Chaoborus americanus in sediment cores. The remaining five lakes historically had fish populations, but fish were not collected in 1979 when pH ranged betwen 4.6 and 5.3. By 1987, fish species were found in five of these lakes where pH had increased on average by 0.9 pH units. Our data indicate that water quality improvements could allow for the reinvasion or resumption of recruitment for a significant number of Ontario lakes.  相似文献   

8.
The toxicity of leachate water from acid-sulphate soil to the early life stages of Australian bass, Macquaria novemaculeata, incubated in seawater was evaluated. Acid-sulphate soil leachate water (pH> or =6.8) delayed the hatching of fertilised eggs, but after 48 h the per cent hatching was normal. In comparison, acidic saline water (25 per thousand salinity) at pH 4.0 or less prevented embryos from hatching. The survival of yolk-sac larvae exposed to acid-sulphate soil leachate water at a concentration of 32% in seawater and an initial pH of 7.2, was significantly different to controls after 96 hours. In corresponding tests with only acidified saline water (20 per thousand salinity), pH levels equal to or below 5.0 killed yolk-sac larvae after 96 h exposure. Aluminum showed a pH dependent toxicity to yolk-sac larvae, with added aluminium as low as 200 microg litre(-1) having a significant effect on larval survival at pH 5.5, and concentrations of 600-800 microg litre(-1) having a significant effect on larval survival at an initial pH range of 6.0 < pH < 6.8. It was concluded that significant mortality of the early life stages of Australian bass would occur if they are exposed to acid-sulphate soil leachate that results in a pH in the receiving estuarine water below 5.5, or when the pH is below 6.8 and aluminium is present at a total concentration of 800 microg litre(-1) or greater.  相似文献   

9.
This paper summarizes some results from a monograph which focused on ecological and biogeographical aspects of the biota in Norwegian lakes and rivers with particular reference to the snail fauna. Field studies were made in the course of 20 summers within the period of 1953-1987. Acidic water is the main reason why snails are absent from some 4000 lakes in a low-calcium area in southern Norway ('Acid south'). This area is heavily influenced by acidic precipitation. Snails were not detected in lakes with pH below 5.2. In one lake, three snail species disappeared in parallel with acidification from pH 5.2 to 4.2. The calcium level modified the effect of low pH.  相似文献   

10.
The Chernobyl accident, and the general acidification of Swedish water systems, form the base for this project. The aims of the work have been to present results on the linkage between the concentration of Cs-137 in fish, lake load of Cs and lake characteristics, to give a preliminary prognosis on the recovery, and to put the results within a wider framework of environmental hazard analysis. A broad set of data on limnology, morphometry and drainage area conditions from 41 lakes were collected during 1986 and 1987. Cs-137 was determined in 1 + perch (Cs-pe, 1-year-old perch), water, material collected by sediment traps and from surficial sediments. The main results are as follows. The average value of Cs-pe for all lakes has dropped from 9800 Bq kg(-1) (wet) to 5040 between the 2 years. Generally, the decrease is between 5 and 90%. We have tested if any factor(s) could be specifically linked to this decrease-no such factors have been found. The concentrations of Cs in sediment traps have, on average, decreased by 80%. Very high correlations exist between Cs-pe and the caesium load as determined from the sediment traps. Between 1 and 10% (mean 3.9%) of the initial fall-out deposition to the drainage area was transported from land to water during June to August 1986. The variation in initial fall-out deposition explains 65-69% of the variability in Cs-pe; the degree of explanation (= coefficient of determination, r2) increases to about 85% if one also takes into account the lake water hardness and totP. A map showing with lakes likely to have 1 + perch with higher mean Cs-concentrations than 1500 Bq kg(-1) wet is presented. Between 4000 and 7000 lakes in Sweden appear to have Cs-pe higher than 1500 Bq kg(-1) wet, figures which emphasize the serious impact of the Chernobyl accident on the environmental conditions in Sweden.  相似文献   

11.
The density of the perch populations decreased rapidly during the 1980s in two acidified lakes in southern Finland. In an acid-humic lake the density of the perch population decreased from 240 to 60 ha(-1) and in an acid clearwater lake from 150 to 20 ha(-1). In both lakes the rapid decrease was mainly due to failures in reproduction, although post-spawning mortality of adult fish was also recorded. The perch spawned annually in both lakes but according to the field exposures of egg strands, most of the eggs died before hatching. Nevertheless, some new recruits appeared in both lakes. These perch, born in 1983-1986, grew faster than those of the more abundant year-classes of the late 1970s, indicating a clear density-dependent growth response. According to the mortality estimate and the age distribution of perch, the latest year-classes that produced more than 100 adult perch ha(-1) were born in 1978 or 1979 in both lakes. It was calculated that the density of both populations was >500 ha(-1) in the early 1980s.  相似文献   

12.
Ra-226 was measured by alpha-emission spectroscopy in water, sediments, and fish (tissues and gut contents), from five lakes in a watershed containing U mining and milling operations at Elliot Lake, Ontario, and from control lakes in an adjacent non-industrialized watershed. Ra-226 transfer parameters from lake water and sediments to fish tissues, and annual intakes by humans consuming fish, were estimated. Mean dissolved 226Ra levels ranged from approximately 76 mBq litre(-1) in water of the most affected lake, to < 10 mBq litre(-1) in control lakes. Levels in summer were consistently higher than in fall or winter; no consistent variation with depth was noted. Sediment levels ranged from approximately 3000 mBq g(-1) dry wt in one study lake to < 100 mBq g(-1) dry wt of sediment in control lakes. Bone 226Ra concentrations were higher than in muscle. The lake trout (Salvelinus namaycush), a predatory secondary consumer, had bone 226Ra levels (< 20 mBq g(-1) dry wt) that did not show significant site variation. In contrast, bottom feeding whitefish had significantly more 226Ra in bone tissue (to 38 mBq g(-1) dry wt in the lake whitefish, Coregonus clupeaformis, and 76 mBq g(-1) in round whitefish, Prosopium cylindraceum) in study lakes than in controls (< 20 mBq g(-1) dry wt). Ra-226 levels in lake trout muscle were low and showed erratic variation among lakes whereas levels in whitefish muscle did not vary significantly among study and control sites. Lake herring (= cisco, Coregonus artedii), a planktivorous fish taken only from Quirke Lake, had mean 226Ra levels of 18 and 1.4 mBq g(-1) dry wt in bone and muscle, respectively. Gut 226Ra levels, highest in lake trout from McCabe and Quirke Lakes (126 +/- 53, 64 +/- 44 mBq g(-1) dry wt, respectively), and just detectable in McCabe and Elliot Lake whitefish (24 +/- 2, 36 +/- 14 mBq g(-1) dry wt, respectively), were below detection in lake trout and whitefish from other lakes. Concentration ratios (CRs) of 226Ra from water to muscle ranged from 8 to 14 in lake trout, 7 to 14 in whitefish, and 4 to 6 in lake herring. The water to bone CRs varied from 81 to 142, 314 to 548, and 126 to 272 in the same species. CRs were always < 1 between sediments and fish tissues. Annual intake of 226Ra by human consumers of these fish was estimated to provide an effective dose of 0.003 mSv year(-1). This represents a small fraction of both natural background (> 2 mSv year(-1)) and the public dose limit (5 mSv year(-1)).  相似文献   

13.
Snucins E  Gunn JM 《Ambio》2003,32(3):240-243
We used rehabilitation experiments involving the stocking of 2 native sportfish, lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieu), in combination with recent fish community surveys, to study the recovery dynamics of fish populations in acid-stressed lakes near Sudbury and Killarney, Ontario, Canada. Population recovery rates differed between the 2 species. Introduced lake trout did poorly in species-rich lakes and exhibited slower growth, lower survival and delayed recruitment. Smallmouth bass, in contrast, readily colonized species-rich lakes. The biomass of natural smallmouth bass recruits increased to reference lake levels within 5 years following water quality recovery and spawning by stocked fish, whereas the biomass of natural lake trout recruits remained well below reference levels 5-15 years after water quality recovery and spawning by adults occurred. We document introductions by anglers of smallmouth bass into acid-damaged lake trout lakes, including some lakes that did not contain bass prior to acidification. This range expansion of a warm-water species (bass) that can alter food-web structure and reduce the growth of a cold-water species (trout), illustrates the potential for the combination of climate warming and species introductions to greatly alter the biological recovery endpoints in acid-stressed lakes.  相似文献   

14.
When liming running waters, dosers must compensate for different flow and water qualities and for the downstream inflow from acid tributaries which creates mixing zones. At a certain point in the mixing zone, a constant or fluctuating chemical disequilibrium will appear due to transformation processes. In laboratory assays, over-saturated solutions of aluminium with ongoing active precipitation of aluminium have been found to be especially toxic to fish. Recent experiments in a mixing zone in the limed River Audna, Norway, have confirmed this phenomenon. Atlantic salmon (Salmo salar L.) and sea trout (Salmo trutta L.) smolts were exposed to acid and limed waters and mixtures of the two waters downstream from the point of connection. In the acid tributary (mean values: pH=4.8, Ca=1.3 mg litre (-1)), Ali 236 microg litre(-1)=), LT5) was 22 and 40 h for Atlantic salmon and sea trout, respectively. In the mixing zone (pH=4.8-6.5, Ca=1.2-3.2 mg litre(-1), Ali=50-240 microg litre(-1)), LT50 was 7 h for both species, masking the normal species difference in tolerance. Osmoregulatory failure and rapid gill lesions occurred in the mixing zone as an effect of the transformation of Al into high molecular weight precipitating species. This is the first documentation of the existence of such highly toxic mixing zones in nature, and the results clearly show that the mixing zone is even more toxic to fish than acid aluminium-rich waters.  相似文献   

15.
Keller W  Heneberry JH  Dixit SS 《Ambio》2003,32(3):183-189
Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.  相似文献   

16.
Snucins E 《Ambio》2003,32(3):225-229
The recolonization of acid-damaged lakes in Killarney Park, Canada is described for 3 species of benthic invertebrates; 2 mayflies (Stenonema femoratum, Stenacron interpunctatum) and an amphipod (Hyalella azteca). Synoptic surveys of 119 lakes for amphipods and 77 lakes for mayflies were conducted between 1995 and 1997 and defined pH thresholds of 5.6 for S. femoratum and H. azteca and pH 5.3 for S. interpunctatum. In an intensive study of 2 acid-damaged lakes and 2 reference lakes from 1997 to 2002, reestablishment of S. interpunctatum, S. femoratum and H. azteca occurred, when timing of the events could be estimated, less than 4-8 years after pH thresholds for specific taxa were reached. Dispersal of S. interpunctatum to all habitat patches within a lake was completed 3 years after recolonization was detected in the smallest lake (11 ha). It is anticipated that dispersal throughout the largest lake (189 ha) will take much longer. The time lag from estimated pH recovery to reestablishment and subsequent dispersal of mayflies to all suitable habitats within a lake was as much as 11 to 22+ years. The density of S. interpunctatum increased in the recovering lakes to levels higher than in reference lakes, but stable endpoints have not yet been reached during 6 years of monitoring.  相似文献   

17.
Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (delta15N, delta13C, delta34S) in fish were also measured. No lake sediments had elevated (>0.3microg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high (<1microg/g dw) to be of concern for fish-eating wildlife. Variance in fish Hg was best explained by dietary carbon source (delta13C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher delta34S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and delta34S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation.  相似文献   

18.
During autumn 1990, littoral zooplankton were collected from three alkaline lakes in Ohio, USA. Toxicity tests were performed, in which animals were placed into treatments of pH 4.5, with or without 500 microg litre(-1) Al added. Percentage survival after 24 h was determined for each test species, and compared to survival in controls (pH roughly 8.0). Three distinct responses were observed: (1) Four cladocerans, Simocephalus serrulatus, Diaphanosoma birgii, Acantholeberis curvirostris and Chydorus sphaericus, were tolerant of both acid and Al, with no significant reductions in survival in the treatments. (2) The cladoceran Eurycercus lamellatus and the capepod Acanthocyclops vernalis were sensitive to both acid and Al, and suffered 100% mortality in both treatments. (3) The cladocerans Camptocercus rectirostris, Alona costata and Pleuroxus denticulatus, and the copopod Mesocyclops edax showed decreased survival in the acid treatment, and a significantly greater decrease in the acid plus Al treatment. For nine of the ten test species, the results were consistent with previous survey and paleolimnological studies. The results indicate that direct toxic effects of H+ and Al ions largely determine the responses of these common littoral species to acidification.  相似文献   

19.
The status of fish populations in 3821 lakes in Norway, Sweden and Finland was assessed in 1995-1997. The survey lakes were chosen by stratified random sampling from all (126 482) Fennoscandian lakes > or = 0.04 km2. The water chemistry of the lakes was analyzed and information on fish status was obtained by a postal inquiry. Fish population losses were most frequent in the most highly acidified region of southern Norway and least common in eastern Fennoscandia. According to the inquiry results, the number of lost stocks of brown trout (Salmo trutta), roach (Rutilus rutilus), Arctic char (Salvelinus alpinus) and perch (Perca fluviatilis) was estimated to exceed 10000. The number of stocks of these species potentially affected by the low alkalinity of lake water was estimated to exceed 11000. About 3300 lakes showed high total phosphorus (> 25 microg L(-1)) and cyprinid dominance in eastern Fennoscandia, notably southwestern Finland. This survey did not reveal any extinction of fish species due to eutrophication. One-third of the lakes had been artificially stocked with at least one new species, most often brown trout, whitefish (Coregonus lavaretus s.l.), Arctic char, rainbow trout (Oncorhynchus mykiss), pike-perch (Stizostedion lucioperca), grayling (Thymallus thymallus), pike (Esox lucius), bream (Abramis brama), tench (Tinca tinca) and European minnow (Phoxinus phoxinus). The number of artificially manipulated stocks of these species in Fennoscandian lakes was estimated to exceed 52000. Hence, the number of fish species occurring in Nordic lakes has recently been changed more by stockings than by losses of fish species through environmental changes such as acidification.  相似文献   

20.
In order to study the influence of pH on the mobilisation of metals from lake sediments, intact sediment cores with overlying water were sampled from one lime treated lake and one acidified lake. The overlying water of two cores from each lake was successively acidified to pH 4.2 over a period of 3 months. In the acid treated samples from the limed lake, the initial concentrations of Al, Cd, Mn, Pb and Zn in the overlying water were generally lower and the final concentrations were higher than in the acid treated samples from the acidified lake. The labile inorganic fraction of Al (Al(i)) was increasingly dominating as pH decreased. Redox potential and pH in the sediment indicated that the upper two centimetres were involved in the exchange reactions. The experiment showed that mobilisation of metals from sediments can occur and the results indicated that mobilisation could contribute to increased concentrations of metals in lake water during reacidification of formerly lime treated lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号