首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the soil-to-plant transfer concept generally used in dose assessment modeling, the plant uptake of a radionuclide should depend linearly on its concentration in the soil. In order to validate this concept for (90)Sr in a semi-natural ecosystem, plant and soil samples were taken at 100 plots of a 100 x 100 m(2) area within an alpine pasture near Berchtesgaden, Germany. At three plots, the vertical distribution of (90)Sr in the soil was determined in addition. A statistically significant correlation between the soil and plant concentration of (90)Sr was not detectable (Spearman correlation coefficient R=-0.116, p>0.05) within the range of the Sr-concentration covered (15-548 Bq kg(-1) dry soil and 17-253 Bq kg(-1) dry plant material). Thus, the prerequisite of the soil-to-plant transfer concept was not fulfilled for (90)Sr at this site. Organic carbon and total nitrogen were also determined in the soil samples. Both elements were highly correlated (R=0.912, p<0.001), their ratio being C/N=10.9+/-0.7. While C was positively correlated with the (90)Sr concentrations in the soil (R=0.342, p<0.001), negative correlations were observed for the plant concentrations (R=-0.286, p<0.01) and the concentration ratios (R=-0.444, p<0.001) of (90)Sr. These results are compared with those recently obtained for (137)Cs by Bunzl et al. (J Environ Radioactiv 48 (2000) 145).  相似文献   

2.
An analysis of 23 112 of geobotanical releves using a soil moisture scale has been performed to characterize indicator properties of plants and distinguish stenotopic and eurytopic species. Indicator species most sensitive to changes in soil moisture have been identified.  相似文献   

3.
The uptake of naturally occurring uranium, thorium, radium and potassium by wheat plant from two morphologically different soils of India was studied under natural field conditions. The soil to wheat grain transfer factors (TF) were calculated and observed to be in the range of 4.0 x 10(-4) to 2.1 x 10(-3) for 238U, 6.0 x 10(-3) to 2.4 x 10(-2) for 232Th, 9.0 x 10(-3) to 1.6 x 10(-2) for 226Ra and 0.14-3.1 for 40K. Observed ratios (OR) of radionuclides with respect to calcium have been calculated to explain nearly comparable TF values in spite of differences in soil concentration of the different fields. They also give an idea about the discrimination exhibited by the plant in uptake of essential and nonessential elements. The availability of calcium and potassium in soil for uptake affects the uranium, thorium and radium content of the plant. The other soil factors such as illite clays of alluvial soil which trap potassium in its crystal lattice and phosphates which form insoluble compounds with thorium are seen to reduce their availability to plants. A major percentage (54-75%) of total 238U, 232Th and 226Ra activity in the plant is concentrated in the roots and only about 1-2% was distributed in the grains, whereas about 57% of 40K activity accumulated in the shoots and 16% in the grains. The intake of radionuclides by consumption of wheat grains from the fields studied contributes a small fraction to the total annual ingestion dose received by man due to naturally existing radioactivity in the environment.  相似文献   

4.
Knowledge about carbon and nitrogen in plants and soils and response to fence and graze in alpine ecosystems is still rudimentary because of extremely geographic situation. The purpose of this study was to compare the difference among carbon, nitrogen concentration, and content of unit area and dynamics of above- and below-ground biomass, soil organic carbon and total nitrogen between fencing and grazing alpine meadow. The results showed that total carbon and C: N radio in the aboveground tissue were significantly higher in fenced and ungrazing grassland (FU) than those in free grazing grassland (FG). In addition, the order of total carbon and nitrogen concentration of aboveground tissue of different function groups were not identical between them; The total carbon storage (TCS) per unit of aboveground tissue, roots and 0–30 cm soil layer increased after being fenced for 5 years from free grazing grassland (9255.17 g/m2) to fenced and ungrazing grassland (12637.10 g/m2) by 26.79%. The corresponding total nitrogen storage (TNS) increased by 751.42 g/m2. Furthermore over 95% TCS (TNS) come from 0–30 cm soil layer. However there were no significant differences between fenced and ungrazing grasslands of 10 years and 5 years. Therefore fenced to exclude grazing by Tibetan sheep and yaks was an alternative approach to sequester C to the soil in alpine meadow systems.  相似文献   

5.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

6.
The effects of snow regimes (including the depth and duration of snow cover) on soil N dynamics and microbial activity in situ were explored in the alpine belt of the eastern Tibetan Plateau. Deeper snow-cover reduced NH 4 + -N content, microbial biomass carbon and nitrogen, fungi count, and enzyme activities, whereas did not change net N mineralization. No differences in N pools in the soil, microbial biomass, microbial counts, and enzyme activity were found under the different duration of snow cover, showing that accumulation and release in soil N pools did not be significantly changed by earlier continuous snow cover.  相似文献   

7.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

8.
This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K(2)SO(4)-extractable and microbially stored (137)Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of (137)Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored (137)Cs amounted to 0.64+/-0.14kBqm(-2) which corresponds to about 1.2-2.7% of the total (137)Cs soil inventory. At lower altitudes, microbial (137)Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored (137)Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of (137)Cs in soils and in the (137)Cs uptake by plants.  相似文献   

9.
Heavy metal-contaminated land is increasingly becoming an important environmental, health, economic, and planning issue in Pakistan. The unplanned disposal of industrial effluent from tannery, for example, has resulted in a many fold increase in chromium (Cr) in the land near a tannery. This study was undertaken to compare the total and the DTPA-available Cr contents in the soil and the roots and leaves of tree species growing on it with those on the nearby noncontaminated reference site at Kala Shah Kakoo, Panjab, Pakistan. A very reduced plant cover on the tannery effluent-contaminated site was noted and there was a sharp boundary between the polluted and nonpolluted reference sites, suggesting a strong selection pressure. Polluted soil contained considerable higher amounts of Cr as compared to the reference soil but no correlation was found between Cr contents in the dried plant tissue and the total DTPA-extractable Cr. Roots of all the three tree species, i.e. Dalbergia sissoo, Acacia arabica, and Populus euroamericana, growing on both the contaminated as well reference site possessed arbuscular mycorrhizal fungal (AMF) infection in their roots and AMF propagules in the associated rhizospheres. D. sissoo and A. arabica roots were also studded with nitrogen-fixing rhizobial root nodules, while those of P. euroamericana possessed AMF as well as ectomycorrhizal infections. The dual infection would encourage mineral nutrition, including Cr. AMF community varied, i.e. trees growing on the reference site were exposed to a wide variety of AMF such as Glomus, Scutellospora, and Acaulospora, whereas those on the contaminated site contained only Gigaspora spp. in their mycorrhizospheres, suggesting a selection pressure. Typical Glomus infection patterns in the roots of D. sissoo growing on the contaminated soil but absence of spores of Glomus spp. in the associated rhizospheres indicate the potential error of using AMF spores to extrapolate the root infection. High Cr contents adversely affected the size, diversity, and species richness of AMF as measured by Shannon-Weiner index. The potential of mycorrhizae in protecting the host plant against the harmful effect of heavy metals and in phytoremediation of the Cr-polluted soil is discussed.  相似文献   

10.
137Cs and 60Co, two of the radionuclides more representative of discharges from nuclear facilities, are of interest for radiological protections because of their great mobility in biosphere and affinity with biological systems. The aim of the present work is the investigation of the possible influence of the vertical distribution of 137Cs and 60Co in soil upon their uptake by lettuce as function of plant's growth. An experiment ad hoc has been carried out in field conditions. The results show that (i) the transfer of 137Cs and 60Co from soil to lettuce is independent by their distribution in soil, (ii) the soil–plant transfer factors of 137Cs and 60Co show a similar trend vs. growth stage, (iii) the 40K transfer factor trend is different from those of anthropogenic radionuclides, and (iv) 137Cs and 60Co specific activities are about 1 Bq/kg, in the mature vegetable with soil activity from 9 to 21 kBq/m2.  相似文献   

11.
The plants of Helianthus annuus L. var. modern were grown in the soil amended with different amounts of tannery sludge (10%, 25%, 35%, 50%, 75% and 100%), collected from Wastewater Treatment Plant Jajmau, Kanpur (Uttar Pradesh, India) under field conditions. The effect of tannery sludge amendments was studied on the growth performance of the plant, i.e. root length, shoot length, leaf area and number of leaves after 30, 60 and 90 days of exposures. The root length of the plant increased up to 35% tannery sludge followed by significant (p<0.01) decrease at higher amendments, whereas the shoot length of the plant increased with increase in sludge amendment ratio at all the exposure periods, compared to their respective controls. The number of leaves and leaf area in the plants of H. annuus increased at all the amendments of tannery sludge at initial exposure periods (30 and 60 days); however, it decreased at higher sludge amendments at highest exposure period (90 days) as compared to their respective controls. The analysis of scanning electron micrographs of the leaf surface of H. annuus grown on 50% and 100% tannery sludge after 90 days showed an increase in the frequency of stomata and trichomes, closure of stomata and degeneration of certain cells in the sludge grown plants.  相似文献   

12.
Based on 30-year monitoring of Ni2+ and Cu2+ concentrations in the organic horizon of Albic Rustic Podzols and the foliage of six plant species, a dynamic trend in the level of heavy metal accumulation in the components of forest ecosystems of the Kola Peninsula has been revealed against the background of five- to eightfold reduction of pollutant emissions. The direction of the trend has been found to differ: the size of polluted area and pollution level increase with time, while the concentrations of heavy metals in plants decrease due to reduction in their input from the polluted air.  相似文献   

13.
14.
Surfactants may be used in remediation of subsoil and aquifer contaminated with hydrophobic compounds. The objectives of this study were to examine the effect of soil texture on hydrophobic organic contaminant (HOC; toluene, or 1,2,4-trichlorobenzene [TCB]) removal from six soils and to evaluate the optimal composition of soil texture for maximum HOC removal using aqueous surfactant solution. Selected surfactants were 4% (vol/vol) sodium diphenyl oxide disulfonate (DOSL) and 4% (wt/vol) sodium lauryl sulfate (LS). Toluene and TCB were selected as the lighter-than-water nonaqueous phase liquid (LNAPL) and denser-than-water nonaqueous phase liquid (DNAPL) model substances, respectively. Soil types used for this study were Ottawa sand and five Iowa soils (Fruitfield, Keomah, Crippin, Webster, and Galvar). The greatest recovery of toluene and TCB in batch tests was 73% and 84%, respectively, which was obtained with DOSL surfactant in Ottawa sand. The toluene removal of 95% in column tests has been achieved in the Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 3750 ml (about 32 pore volume) passed. TCB removal of 98% in column tests has been achieved in Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 2500 ml (about 21 pore volume) passed. These results were related with soil texture (clay content 30%), clay mineralogy (kaolinite and smectite), as a function of transported pore volume.  相似文献   

15.
Impact of oil pollution on some desert plants   总被引:2,自引:0,他引:2  
The environmental damage to Kuwaiti flora was studied. Four Kuwaiti desert flowering plants, Picris babylonica, Launaea mucronata, Senecio glaucus, and Sonchus oleraceous, which suffered mutagenic modifications with changes in tapetal cell characteristics, were selected for this study. Changes in growth parameters, such as photosynthetic pigments, proteins, free amino acids, phenols, and reducing sugar levels, which could have resulted from the observed genotoxicity of oil pollution, were studied. P. babylonica showed marked differences in the levels of the above parameters as compared to the other three plant species. In P. babylonica, levels of phtosynthetic pigments, reducing sugars, proteins, plamitate/stearate, Linoleate/stearate, and linolenate/stearate fatty acid ratios were higher than in the corresponding plant species collected from control areas away from blazing oil wells. On the other hand, in P. babylonica, the levels of phenols and free amino acids were lower as compared to the plants collected from the control area. It appeared that the level of these parameters was dependent on the level of photosynthetic pigments.  相似文献   

16.
The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5+/-0.3) and strawberry (2+/-1), higher in vegetables (5+/-3), seeds (15+/-7) and reached a maximum in straw (187+/-90). The average CR values of 36Cl were estimated for the most important crops using all experimental data on 36Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36Cl specific content in the water and moisture in the cooked potato. The 36Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36Cl PF for cereal flour can be estimated as 1. The 36Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36Cl specific activity in soil of 1 Bq kg-1, the estimated annual dietary 36Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children.  相似文献   

17.
Assessments of the behaviour of 99Tc in terrestrial environments necessitate predicting soil-to-plant transfer. An experiment with 116 plant taxa showed that 99Tc transfer to plants was positively related to plant dry weight but negatively related to % dry matter and age at exposure. Activities of 99Tc analysed by hierarchical ANOVA coded with an angiosperm phylogeny revealed significant effects, with 55% of the variance between species explained at the Ordinal level and above. Monocots had significantly lower transfer of 99Tc than Eudicots, within which Caryophyllales > Solanales > Malvales > Brassicales > Asterales > Fabales. There was a significant phylogenetic signal in soil-to-plant transfer of 99Tc. This phylogenetic signal is used to suggest that, for example, a nominal Tc Transfer Factor of 5 could be adjusted to 2.3 for Monocots and 5.3 for Eudicots.  相似文献   

18.
This paper reports results of gamma and alpha spectrometric measurements for mosses, lichens, fungi and soil samples from areas in the Balkans targeted by depleted uranium (DU). Samples were collected in 2002 and 2003 in the vicinity of several villages, principally Han Pijesak (Bosnia and Herzegovina, hit by DU in 1995) and Bratoselce (South Serbia, hit by DU in 1999) and in lesser numbers from Gornja Stubla, Kosovo (which is identified as a high natural radon/thoron area) and Presevo close to the Kosovo border. In the course of gamma spectrometric measurements some results suggested samples with unusual high uranium contents which might be considered to be a signature for the presence of DU, although many samples had very high detection limits. Alpha spectrometric measurements directly proved the presence of DU for five samples, all from directly targeted places. These were samples of mosses, lichens and soil. For some samples homogeneity tests were applied which showed a rather even distribution of DU in these samples. No trace of DU was found in any sample from a dwelling.  相似文献   

19.
Species distribution is often closely associated with soil nutrients in terrestrial ecosystem. In contrast to most manipulated N (nitrogen) experimental studies, there are few observation experiments examining the distribution of species or functional groups along a natural soil N gradient. Alpine meadows with higher soil spatial heterogeneity at fine scale, which have a large gradient in soil N gradient, provides an ideal system to examine the distribution of species or functional groups. Here we used redundancy analysis (RDA) to examine the relationships between soil and plant properties in northeast of Qinghai-Tibet Plateau over two years. The results showed the relative biomass of forbs increased, while those of legumes and grasses decreased with the soil N availability. This suggests that legumes and grasses had stronger tolerance to infertile soils than forbs, which may due to the N2-fixed for legumes and high nutrient use efficiency for grasses. Furthermore, the positive significant relationships between the percentage of legumes biomass and N: P (phosphorus) ratio were found in the whole community and non-legumes, confirming the presence of legumes improved the vegetation N status even for non-legumes.  相似文献   

20.
A complex radioecological study of technogenic landscapes of southern Yakutia showed that the main factor responsible for their contamination with uranium and radium is radionuclide dispersal by air with products of rock weathering. Coefficients of biological absorption by plants decrease with an increase in the contamination level, which is explained by the fact that strongly fixed forms of uranium and radium prevail in the contaminated areas. In addition, the root barrier plays an important role. Radiation load is mainly determined by background gamma-radiation. The contribution of internal irradiation accounted for by incorporated radionuclides does not exceed 16% and decreases with an increase in the level of soil contamination. Manchurian alder seeds produced under conditions of enhanced background radiation are more viable than those from the control area. It is shown that seed generations of plants growing under conditions of chronic irradiation are highly resistant to the radiation factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号