首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究   总被引:19,自引:3,他引:16  
将好氧活性污泥接种于膨胀颗粒污泥床(EGSB)反应器中,经过120 d的启动运行,形成颗粒污泥.在启动好的EGSB反应器进水中添加亚硝酸盐和氨盐,反应器内温度控制在32~35 ℃,pH为7.5~8.3,氧化还原电位为-150~-40 mV;水力停留时间4.2 h,上升流速4.86 m/h,经过270 d运行,逐步富集和耦合产甲烷菌、反硝化菌和厌氧氨氧化菌.在进水ρ(CODCr)为500 mg/L,有机容积负荷速率为4.800 kg/(m3·d)(以CODCr计)和1.152 kg/(m3·d)(以N计)的条件下,出水ρ(CODCr)维持在80 mg/L以下;CODCr,氨氮,亚硝态氮和总氮去除率分别为85%, 35%, 99.9%和67%;其去除速率分别稳定在6.12,0.202,0.575和0.777 kg/(m3·d);其中氨氮和总氮的去除速率分别是传统活性污泥法硝化/反硝化(0.05 kg/(m3·d))的4和15.5倍. pH,温度,溶解氧,氧化还原电位,亚硝酸盐和CODCr对EGSB反应器中厌氧氨氧化与甲烷化反硝化的耦合和颗粒污泥的特性均有影响.   相似文献   

2.
厌氧氨氧化混培菌的获得及其运行条件   总被引:24,自引:0,他引:24  
采用了好氧活性污泥和厌氧颗粒污泥混合接种的方法 ,成功地启动了实验室规模的厌氧氨氧化反应器 ,启动后含氨模拟废水运行的进水氨浓度和进水亚硝基氮浓度均为 2 0 mmol/ L ,氨氮、亚硝基氮和总氮的容积负荷率为10 .69mmol/ L·d,12 .2 6mmol/ L· d和 3 94.5 5 mg/ L·d,氨氮、亚硝基氮和总氮的去除率保持在 90 %、99%和 95 %以上 ,对运行条件研究表明 ,厌氧氨氧化反应的最适 p H为 7~ 7.5 ,最适温度约在 3 0± 1℃。厌氧氨氧化随亚硝酸盐浓度的升高而下降 ,氨的厌氧转化随 COD浓度的增加也呈抑制型曲线 ,当 COD浓度为 80 0± 5 0 mg/ L 时 ,厌氧氨氧化速率达到最大  相似文献   

3.
高效厌氧氨氧化颗粒污泥膨胀床(EGSB)工艺性能研究   总被引:1,自引:0,他引:1  
采用模拟含氨废水和颗粒污泥膨胀床(EGSB)反应器研究了厌氧氨氧化工艺的高效性能.试验结果表明,厌氧氨氧化EGSB工艺具有很高的容积效率,在35℃、进水氨氮浓度247.1~444.8mg·L-1、亚硝氮浓度为308.7~483.8mg·L-1的条件下,反应器水力停留时间可缩至0.237~0.267h,平均容积去除速率可高达61.4kg.m-.3d-1(以N计).同时,该工艺具有超常的运行稳定性,在进水基质浓度、进水流量和pH波动的情况下,总氮去除率和出水浓度的相对标准偏差分别为3.6%~6.9%和14.4%~22.6%.厌氧氨氧化EGSB工艺的高效稳定性可归因于反应器的强污泥持留能力和厌氧氨氧化污泥的高反应活力.系统内持留的污泥浓度高达24~28g·L-1(以VSS计),分批培养测得的最高比污泥活性为2.19g.g-1.d-1(以N计),连续培养测得的最高比污泥活性为3.62g.g-.1d-1(以N计).  相似文献   

4.
将膨胀颗粒污泥床(EGSB)和曝气生物滤池(BAF)集成,EGSB出水进入BAF进行短程硝化,BAF出水外回流至EGSB反应器为后者提供亚硝态氮,在不需外部投加亚硝态氮的条件下,实现厌氧氨氧化、甲烷化和短程硝化反硝化的耦合, 系统地处理ρ(氨氮)为50 mg/L和ρ(CODCr)为500 mg/L的合成废水.结果表明:当外回流比为200%时,系统CODCr,氨氮和总氮的去除率分别为92.4%,97.4%和80.6%;出水ρ(氨氮),ρ(亚硝态氮),ρ(硝态氮)和ρ(CODCr)分别为1.05,4.30,2.56和35.3 mg/L;CODCr,总氮和氨氮的去除负荷速率分别为1.770,0.137和0.164 kg/(m3·d). 与传统的活性污泥过程相比,EGSB-BAF集成系统回收甲烷1.03  L/d,占系统CODCr去除量的37.0%;在系统总氮的去除过程中,厌氧氨氧化途径占35.9%,短程反硝化途径占47.4%,全程反硝化途径占16.7%.   相似文献   

5.
EGSB反应器中实现完全自营养脱氮与运行优化   总被引:4,自引:0,他引:4  
任宏洋  张代钧  丛丽影 《环境科学》2009,30(5):1454-1460
同时接种好氧氨氧化污泥和厌氧氨氧化污泥启动EGSB反应器,培养完全自营养脱氮颗粒污泥,总氮去除速率达0.101 kg·(m3·d)-1.基于边界层假设模拟颗粒污泥与液相主体间的传质过程,并将其与颗粒污泥内传质过程以及好氧氨氧化、厌氧氨氧化和亚硝酸盐氧化过程相耦合,建立了颗粒污泥完全自营养脱氮模型,应用实验结果对模型进行了验证.根据模拟结果对EGSB反应器运行条件进行优化,总氮平均去除效率由52%提高到61%,平均去除速率由0.103 kg·(m3·d)-1提高到0.114 kg·(m3·d)-1.  相似文献   

6.
基质浓度对ABR反应器SAD协同脱氮除碳效能影响   总被引:2,自引:1,他引:1  
为改善厌氧氨氧化对总氮(TN)去除不完全和有机物对厌氧氨氧化胁迫的问题,采用厌氧折流板反应器(ABR),接种成熟的厌氧氨氧化污泥与城市污水处理厂厌氧污泥,通过不同基质浓度控制,构建厌氧氨氧化耦合反硝化系统(SAD),并考察不同进水基质(COD、NO-2-N、NH+4-N)浓度对耦合系统脱氮除碳效能的影响及污染物去除规律.结果表明,在ABR反应器中可实现厌氧氨氧化与反硝化的耦合反应,并缓解了有机物对厌氧氨氧化菌的抑制效应.当进水COD、NO-2-N和NH+4-N浓度为260、185和100 mg·L-1,比例为2.6∶1.85∶1时,三者出水浓度分别低于10、1.0和0.9 mg·L-1,TN去除率达到99%,实现系统的稳定运行和C、N污染物的超低排放.不同基质浓度和比例条件下,目标污染物去除基本在第1隔室完成,去除率均在75%以上,且厌氧氨氧化反应在SAD耦合系统脱氮中占主导地位.  相似文献   

7.
BTMT生物膜载体对厌氧氨氧化反应器启动的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用两套厌氧氨氧化反应器R1和R2,研究了BMTM生物膜载体对厌氧氨氧化工艺启动特性的影响.结果表明,R1采用UASB反应器启动厌氧氨氧化反应器,经140d运行,对氨氮和亚硝酸盐氮的去除率仅达到54.6%和58.8%,氨氮与亚硝酸盐氮去除负荷之和仅为0.09kg/(m3×d),随后,向其上部投加0.6L BMTM载体,经过26d运行,氨氮及亚硝酸盐氮去除率分别迅速提升至92.5%和97.4%,R1的启动速度较之前有明显提高;R2采用BMTM载体启动上流式填料床生物膜反应器厌氧氨氧化工艺,经过83d的运行,氨氮及亚硝酸盐氮去除率分别达到83.6%和89.4%,氨氮与亚硝酸盐氮去除负荷之和达0.22kg/(m3×d),启动速度较R1大幅提高.  相似文献   

8.
厌氧氨氧化与反硝化协同脱氮处理城市污水   总被引:9,自引:7,他引:2  
张诗颖  吴鹏  宋吟玲  沈耀良  张婷 《环境科学》2015,36(11):4174-4179
利用ABR反应器在温度为27℃,p H为8,HRT为10 h,进水NO-2-N/NH+4-N为1.32条件下,在45 d内成功启动厌氧氨氧化反应,稳定阶段反应器出水TN平均去除率为83%,此阶段的三氮比ΔNH+4-N∶ΔNO-2-N∶ΔNO-3-N为1∶1.31∶0.27.在利用厌氧氨氧化反应器处理实际污水过程中,进水中不可避免地含有一定量的有机碳.在C/N比为0.5时,有机碳对厌氧氨氧化反应无明显影响;厌氧氨氧化菌与反硝化菌的最佳协同作用条件为C/N=1,此时TN平均去除率为93%;在C/N比为2时有机碳会对厌氧氨氧化菌产生抑制作用,导致TN去除率降低;降低进水COD浓度后,厌氧氨氧化菌能在短时间内恢复活性.考察了厌氧氨氧化与反硝化协同作用对城市污水的处理性能,证明ABR协同脱氮反应器适用于处理低氨氮浓度城市污水,出水TN浓度为7.5 mg·L-1左右,平均去除率达86%.  相似文献   

9.
城市生活污水SNAD工艺的启动研究   总被引:3,自引:0,他引:3  
采用SBR反应器,以城市生活污水为原水,进行同步亚硝化、厌氧氨氧化、反硝化(SNAD)工艺的启动研究.首先接种厌氧氨氧化(anammox)颗粒污泥,在高曝气量下(500L/h)培养得到亚硝化颗粒污泥,然后再次接种anammox颗粒污泥,在低曝气量下(40L/h)培养得到SNAD颗粒污泥.在亚硝化稳定期,氨氮平均去除率达到94%,亚硝态氮平均积累率达到95%.在SNAD稳定期,总氮平均去除率为85%.批试实验结果表明,亚硝化稳定期亚硝化颗粒污泥的好氧氨氮和亚硝态氮氧化活性分别为为0.234和0kgN/(kgVSS×d).SNAD颗粒污泥的厌氧氨氧化总氮去除、亚硝态氮反硝化、好氧氨氮氧化、好氧亚硝态氮氧化活性分别为0.158、0.104、0.281、0kg/(kgVSS×d),其中硝态氮反硝化活性在0~120min和120~360min内分别为0.061和0.104kg/(kgVSS×d).扫描电镜显示,SNAD颗粒污泥表面以短杆状菌和球状菌为主,可能为好氧氨氧化菌(AOB)和反硝化菌,颗粒污泥内部以火山口状的细菌为主,可能为anammox菌.  相似文献   

10.
对EGSB反应器进行改型,采用填料覆盖式出水富集培养厌氧氨氧化菌,并考察了反应器的脱氮能力,厌氧氨氧化现象,污泥颗粒化情况以及微生物变化情况。从第80天开始,反应器运行稳定,出现厌氧氨氧化现象,经过160多天的连续培养,总氮容积负荷达到0.88 kg/(m3·d),氨氮、亚硝酸氮去除率均在85%以上,污泥颗粒化明显,大部分污泥颗粒粒径在0.2~2 mm。反应器富集培养物中厌氧氨氧化菌含量明显增长,优势菌种为Candidatus_Brocadia属。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

20.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号