首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyaniline (PANI) and Ag/PANI nanoporous composite were prepared by an oxidative polymerization method. The oxidation process of PANI nanoparticles was occurred using (NH4)2S2O8 while the oxidation process of Ag/PANI nanoporous composite was occurred using AgNO3 under the effect of artificial radiation. The structural, morphological, and optical properties of the PANI and Ag/PANI nanoporous structures were studied using different characterization tools. The results confirm the formation of polycrystalline nanoporous PANI and spherical nanoporous composite of Ag/PANI particles. Antibacterial activity tests against gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, and gram-negative bacteria, Escherichia coli, and Salmonella species were carried out using different concentrations of PANI nanoparticles and Ag/PANI nanoporous composites. PANI has not antibacterial effect against all studied pathogens. In contrast, Ag/PANI nanoporous composites possessed antibacterial activity that is identified by the zone of inhibition. The inhibition zones of bacteria are in order; Salmonella species?>?S. aureus?>?B. subtilis?>?E. coli. The inhibition zones of all bacteria increased with increasing concentrations of Ag/PANI nanoporous composites from 200 to 400 ppm then decreased with further increasing of the dose concentrations to 600 ppm. Finally, a simplified mechanism based on the electrostatic attraction is presented to describe the antimicrobial activity of Ag/PANI nanoporous composite.  相似文献   

2.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

3.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   

4.
Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable polymer synthesized in microorganisms. The application of PHBV is limited by certain material disadvantages. Poly(ε-caprolactone) (PCL) possesses excellent thermodynamic and mechanical properties and was used to modify PHBV in the presence of triethyl citrate (TEC) and dicumyl peroxide (DCP), which was used as plasticizer and grafting agent, respectively. The effects of PCL and additive agents on the mechanical, thermal, amphipathic and degradability behaviors of the blends were investigated. The results showed that the mechanical properties of the PHBV blends improved by PCL incorporation and improved even further after TEC and DCP addition. The addition of DCP could not induce an increase in crystallization temperature but improved the crystallization degree of the blends. The presence of hydrophilic groups in TEC leads to an apparent increases in the hydrophilicity of the PHBV blends. A PHBV/PCL blend (40/60) with TEC (20 wt.%) and DCP (0.5 wt.%) was chosen for its good mechanical properties and hydrophilicity. The chosen ratio of the blends was also shown a preferable degradation activity by biodegradation assay using Pseudomonas mendocina. The addition of TEC and DCP has no conspicuous negative effect on the biodegradation.  相似文献   

5.
The fermentation conditions for poly(l-lactide) (PLA)-degrading enzyme production by Amycolatopsis orientalis ssp. orientalis were statistically optimized by response surface methodology. The optimal value of the most important factors was 0.39 % PLA and 0.34 % gelatin for 2.81 days of cultivation. Under these conditions, the model predicted a PLA-degrading activity of 155.30 U/l. The verification showed the production amount of 154.2 U/l. The crude enzyme from A. orientalis ssp. orientalis showed potent PLA-degrading ability, which is efficient for the biological recycling of PLA. Up to 4,000 mg/l of PLA granule was completely degraded within 5 days at 45 °C by the crude enzyme. l-lactic acid (600 mg/l) was obtained as a degradation product of PLA after only 2 h of incubation. The results indicated that the crude PLA-degrading enzyme from A. orientalis ssp. orientalis has the potential to degrade PLA to lactic acid for the recycling of PLA industry and waste disposal.  相似文献   

6.
Mesostructured iron oxyhydroxide (FeO x ) and iron oxyhydroxide–phosphate (FeO x P) composites were organized using dodecylsulfate surfactant as a template. X-ray diffraction studies depicted a lamellar structure of the product. Ion exchange and solvent extraction methods were employed for the removal of the surfactant. Carboxylate ions exchanged lamellar type mesostructured material reorganized to a wormhole-like mesoporous material when heated under N2 atmosphere. Surfactant was completely removed by carboxylate ions as observed by the Fourier transform infrared spectra. High surface area acetate-exchanged FeO x (230 m2 g?1) was obtained after the surfactant removal from the composite (2.8 m2 g?1). Surface area of acetate-exchanged FeO x P was the highest (240 m2g?1) after the removal of the surfactant. Local structure of iron species of FeO x was investigated by X-ray absorption fine structure spectroscopy. Further, Fe···Fe bond appeared at 3.21–3.25 Å with coordination number 2–3, showing a high degree of un-saturation of Fe···Fe bonds. As compared with bulk iron oxyhydroxide and iron-intercalated montmorillonite, the mesoporous iron materials were highly effective for arsenic removal from low concentrations of aqueous solutions. Furthermore, mesoporous iron materials were stable in aqueous phase.  相似文献   

7.
This study investigated the effects of hygiene indicator bacteria during the biostimulation of groundwater contaminated with chlorinated ethene. We showed the state of dechlorination activity and behavior of microbial structure by the addition of Escherichia coli (E. coli) as hygiene indicator bacteria in a contaminated groundwater sample. Dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene (cis-DCE) within 14 days took place similarly both with and without the addition of E. coli. This indicated that inhibition of against dechlorinating activity of corresponding dechlorinating bacteria was not caused by E. coli. Structural change of the bacterial community was analyzed both before and after dechlorination using a denaturing gradient gel electrophoresis (DGGE) and clone library. The result of DGGE detected E. coli only at day 0. A sample at day 14 after dechlorination detected Pseudomonas putida, Anaerosinus glycerini, and Clostridium genus but not E. coli. The result of the clone library also showed an identical profile. Detection of E. coli using desoxycholate media was decreased from 2.3 × 106 cells/ml to 6.0 × 103 cells/ml during day 14. These results suggest that biostimulation of groundwater contaminated by chlorinated ethene in the presence of hygiene bacteria caused the dechlorination without activity inhibition and decrease of dechlorinating bacteria.  相似文献   

8.
Biodegradation of poly(ε-caprolactone) composite with graphite oxide (GO) by the action of Bacillus subtilis (BS) was studied in this work. Nanocomposite produced in a form of thin film was exposed to nutrient cultivation medium with BS as well as to abiotic nutrient medium (control run) at 30 °C. The matrix itself was exposed to the same conditions for comparison. Biodegradation was demonstrated by the weight loss and the decrease of molecular weight during 21 days of the experiment as well as by changes in the surface morphology and structure. Both degraded and control materials were characterized by confocal laser scanning microscopy, differential scanning calorimetry, thermogravimetry, and Fourier transform infrared spectroscopy with attenuated total reflectance. The bacterial growth expressed as the measure of the optical density/turbidity in McFarland units and pH of medium were measured in situ during the experiment. Lipolytic activity of BS was determined by spectrophotometric assay. Degradation process was accompanied by the increase of matrix crystallinity degree. GO served as nucleating agent and facilitated absorption of cultivation media into the composite which led to the increase of the crystallinity degree also for control nanocomposite specimens. It was not evaluated to be promoter of biodegradation. The surface cracks formation was initiated by BS action. Large surface cracks were formed on BS-degraded composite surfaces while surface erosion was more significant on BS-degraded matrix.  相似文献   

9.
The disposal of waste plastics is a major environmental issue all over the world. As an alternative to disposal that also adds value to the waste product, polycarbonate particles were used as model waste plastic material, mixed with sodium hydroxide and then pyrolyzed at 773 K to produce activated carbon. Activated carbon has numerous industrial applications, including use as adsorbents in adsorption heat pumps and several environmental applications. Activated carbon obtained upon pyrolysis was characterized by determining its adsorption capacity for liquid nitrogen and water vapor. The effects of the key process variables, i.e., chemical ratio and activation time, on micropore development and water adsorptivity were evaluated by response surface methodology. The quadratic models were found to be satisfactory in describing their performance. Based on the contour plots, activated carbon with a maxima of surface area and micropore volumes can be produced at an optimal level of chemical ratio along with longer activation time. The water adsorptivity generally has less difference at low relative pressures, but inflexion of water adsorptivity occurs at a relative pressure of P/P 0 ≈ 0.4. The optimized water adsorptivity in the operating pressure range of adsorption heat pumps (P/P 0 = 0.11–0.38) can exceed 0.24 kg/kg.  相似文献   

10.
The biodegradability, morphology, and mechanical properties of composite materials consisting of maleic anhydride-grafted poly(butylene succinate adipate) (PBSA-g-MA) and agricultural residues (wheat bran, WB) were evaluated. Composites containing maleic anhydride-grafted PBSA (PBSA-g-MA/WB) exhibited noticeably superior mechanical properties compared with those of PBSA/WB because of greater compatibility with WB. PBSA/WB exhibited a tensile strength at break of approximately 2–15 MPa more than PBSA-g-MA/WB. The dispersion of WB in the PBSA-g-MA matrix was highly homogeneous as a result of ester formation and the subsequent creation of branched and cross-linked macromolecules between the anhydride carboxyl groups of PBSA-g-MA and hydroxyl groups in WB. Additionally, the PBSA-g-MA/WB composites were more easily processed due to their lower melt viscosity. Water resistance of PBSA-g-MA/WB was higher than that of PBSA/WB, although weight loss of composites buried in Azospirillum brasilense BCRC 12270 liquid culture medium compost indicated that both were biodegradable, especially at high levels of WB substitution. After 60 days, the weight loss of the PBSA-g-MA/WB (40 wt%) composite was greater than 90 %. PBSA/WB exhibited a weight loss of approximately 4–8 wt% more than PBSA-g-MA/WB. The PBSA/WB and PBSA-g-MA/WB composites were more biodegradable than pure PBSA, which implies a strong connection between WB content and biodegradability.  相似文献   

11.
Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.  相似文献   

12.
Prior to composting, the composition of palm oil mill wastes were analyzed. Palm empty fruit bunches (PEFB) contained the highest total organic carbon (52.83 % dry weight) while palm oil mill biogas sludge (POMS) and decanter cake (DC) contained higher total nitrogen (3.6 and 2.37 % dry weight, respectively) than the others. In addition, palm oil fuel ash (POFA) had a high amount of phosphorus and potassium (2.17 and 1.93 % dry weight, respectively). The effect of mixture ratio of POMS and other palm oil mill wastes for composting was studied using the mixed culture Super LDD1 as an inoculum. All compost piles turned dark brown and attained an ambient temperature after 40 days incubation. The pH values were stable in the range of 6.9–7.8 throughout the process whereas the moisture content tended to decrease till the end with the final value around 30 %. After 60 days incubation, the mixture ratio of POMS:PEFB:DC at 2:1:1 with the addition of biogas effluent gave the highest quality of the compost. Its nitrogen content was 31.75 % higher than the other treatments that may be a result of growth of ink cap mushroom (Coprinus sp.). This is the first report on the occurrence of this mushroom during composting. In addition, its nutrients (3.26 % N, 0.84 % P and 2.03 % K) were higher than the level of the Organic Fertilizer Standard. The mixed culture Super LDD1 produced the highest activity of CMCase (6.18 Unit/g) and xylanase (11.68 Unit/g) at 9 days fermentation. Therefore, this solid-state fermentation could be employed for production of compost as well as enzymes.  相似文献   

13.
The biodegradation of electrospun nano-fibers of poly(-caprolactone) (PCL) was initially investigated with respect to the environmental application of PCL non-woven fabrics, using pure-cultured soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. Three kinds of non-woven PCL fabrics with different mean fiber diameters (330, 360, and 510 nm) were prepared by changing the viscosities of the pre-spun PCL solutions (150, 210, and 310 cPs, respectively). All of the pure-line soil filamentous fungi tested grew on the two fiber materials. Electron microscopy was used to observe the biodegradation processes revealing remarkable growth of two fungi, Rhizopus sp. and Mucor sp., along with the accompanying collapse of the nano-fiber matrices. In the biochemical oxygen demand (BOD) test, the biodegradation of the 330 nm PCL nano-fibers by Rhizopus sp. and Mucor sp. exceeded 20 and 30% carbon dioxide generation, respectively. The biodegradability of the PCL non-woven fabrics decreased with the mean fiber diameter and the 330 nm PCL nano-fiber that was made from 150 cPs solution (concentration, 7 wt%) exhibited the highest biodegradability. These results might offer some clues for the applications of the PCL non-woven fabrics having the controlled biodegradability in the environmental uses.  相似文献   

14.
The color of wood ash is normally white, but black color ash was observed when seawater-soaked wood was combusted. In order to check the conditions for generation of black ash, we examined both ashing temperatures from 500 to 800 °C and seawater salt densities for wood soaking. As seawater salt densities rose, the ash color got black at ashing temperatures of 500 and 700 °C. The colors of the ash were analyzed by a spectrophotometer, and color space L* a* b* was measured. The L* value and wood ash yield showed a negative correlation when the ashing temperature was at 600 °C. Salt concentration in wood (SC) was practicably estimated from the L* value (R 2 = 0.51) by the approximation formula [SC (%) = 11.82e?0.038L*]. By scanning electron microscope (SEM) observation, black ash of 600 °C was fully covered by translucent material. It was composed of Na, Mg and Cl by energy dispersive X-ray spectroscopy analysis, and seemed to be crystallized seawater salt. Washed black ash was also observed by SEM, translucent seawater salt was removed and the wood tissue was observed. Black ash was found to be carbonized wood tissue residue, and it was generated when seawater salt exists with a woody biomass.  相似文献   

15.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   

16.
Cellulose gel films were prepared by regeneration process using pre-cooled aq.(8 wt% LiOH + 15 wt% urea) mixture as solvent and ethyl alcohol as non solvent. The Terminus cattapa leaf extract diffused wet cellulose films were then dipped in 1–5 mM aq.AgNO3 solutions to allow in situ generation of silver nanoparticles (AgNPs). Besides the in situ generation, some AgNPs were also formed outside the wet films in the solution. The AgNPs formed outside the films were observed under transmission electron microscope and scanning electron microscope. The nanocomposite films were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis and tensile test. The thermal stability of the composite films was lower than that of the matrix up to a temperature of ~300 °C and afterwards showed a reverse trend. The tensile strength of the nanocomposite films was found to be higher than the matrix but decreased with increasing concentration of aq.AgNO3. The cellulose/AgNPs composite films showed good antibacterial activity against E. coli (gram positive) and Bacillus sp. (gram negative). Based on the aforementioned properties, the cellulose/AgNPs composite films can be considered for antibacterial packaging and medical applications.  相似文献   

17.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   

18.
This research presents, thermal (TGA, Kinetics, DSC) analysis and FT-IR characterization of two bamboo species viz. Gigantochloa levis and Gigantochloa scortechinii at different position and locations (Internode and node). The internodes and nodes of Gigantochloa levis and Gigantochloa scortechinii exhibited similar thermal stability, observed up to 200 °C. The decomposition of cellulose and hemicelluloses component of the bamboo species occurred between 220 and 390 °C, while the degradation of lignin was observed above 400 °C. The kinetic studies revealed that Gigantochloa levis is more sensitive to degradation as compared to Gigantochloa scortechinii. The FT-IR studies were carried to assign the functional groups available at different positions and locations.  相似文献   

19.
A novel sodium alginate-grafted poly(acrylic acid)/graphene oxide (NaAlg-g-PAA/GO) composite hydrogel was prepared via ultraviolet irradiation, and characterized by infrared spectroscopy spectrometer. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. It was employed to adsorb NH4+ from aqueous solution and used as slow-release nitrogen fertilizers (SNFs). Result indicated that the adsorption process for NH4+ reached equilibrium within 50 min, with the adsorption capacity of 6.6 mmol g?1 even if 30 wt% GO was incorporated. The results of adsorption kinetic and isotherm were well described by the pseudo-second-order and Freundlich model. The thermodynamics analysis showed the adsorption process was spontaneous. The study indicated excellent water-holding ratio of soil with 2 wt% SNFs was 81.2%, and nitrogen release was up to 55.1% within 40 days in soil. Overall, NaAlg-g-PAA/GO could be considered as an efficient adsorbent for the recovery of nitrogen with the agronomic reuse as a fertilizer.  相似文献   

20.
SBA-15/PAMAM Nano adsorbent was synthesized by the proficiency of SBA-15 as an original compound, 3-chloropropyltrimethoxysilane as a bridge chemical compound and polyamidoamine dendrimer (PAMAM) in the role of a multifunctional amine end group for adsorption of acid blue 62 (AB62) from aqueous media. The synthesized adsorbent was characterized by transmission electron microscope, field emission scanning electron microscope and Fourier-transform infrared spectroscope. A response surface methodology was employed to evaluate the simple and amalgamated factors of the operating variables subtending initial pH (2–12), adsorbent dosage(0.01–0.03 g), contact time (5–120 min), initial dye concentration (40–600 ppm) and temperature (25–45?°C) to optimize the operating statues of the treatment method. These parameters were altered at five levels pursuant to the central composite design to appraise their effects on AB62 removal through analysis of variance. Analysis of variance represented a high coefficient of definition amount (R2?=?0.9999) and acceptable prediction quadratic polynomial model was concluded which ascertain the suitability of the model and a high correlation among the predicted and empirical amounts. Utmost color removal efficiency was auspicated and empirically accredited. The optimum conditions relied on acquired results for AB62 removal were at an initial pH of 2, adsorbent dosage of 0.03 g SBA-15/PAMAM, dye concentration of 40 mg l?1, time contact of 60 min and temperature of 25?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号