共查询到20条相似文献,搜索用时 0 毫秒
1.
Chitosan, a natural polymer, was prepared by deacetylation of chitin which was obtained from dried prawn shell and was characterized. Thin chitosan film of chitosan was prepared by casting method from 0.2 % chitosan in 2 % acetic acid solution. Five formulations were developed with ethylene glycol dimethacrylate and (2-hydroxyethyl) methacrylate along with photo-initiator, Darocur-1664 (4 %). The chitosan film was soaked in the formulations at different soaking times and irradiated under UV-radiation at different intensities for the improvement of its physical and mechanical properties. The cured chitosan films were then subjected to various mechano-chemical tests like tensile strength, elongation at break, polymer loading, water absorption and gel content. The formulation containing 30 % ethylene glycol dimethacrylate and 66 % (2-hydroxyethyl) methacrylate showed the best performance at the 30th UV pass of UV-radiation for 3 min soaking time. 相似文献
2.
Nugraha E. Suyatma Alain Copinet Lan Tighzert Veronique Coma 《Journal of Polymers and the Environment》2004,12(1):1-6
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA. 相似文献
3.
Marco A. López-Mata Saúl Ruiz-Cruz José de Jesús Ornelas-Paz Carmen Lizette Del Toro-Sánchez Enrique Márquez-Ríos Norma P. Silva-Beltrán Luis A. Cira-Chávez Silvia E. Burruel-Ibarra 《Journal of Polymers and the Environment》2018,26(2):452-461
Chitosan films (CF) [1 and 2% w/v] alone and with cinnamaldehyde (CNE) [0.25, 0.5 and 1% v/v] were prepared using an emulsion method, and the obtained films were characterized in terms of water vapor permeability (WVP), water solubility and optical, mechanical and antioxidant properties. The incorporation of CNE at 1% (v/v) significantly decreased the water solubility of the film by approximately 4% for the 1 and 2% CF films, whereas the WVP increased (2.5–3.5 times). The incorporation of CNE (0.25 and 0.5%) into 2% CF significantly increased the tensile strength (TS) (62 and 34%, respectively) and the percent elongation (%E) values, 26, 30 and 52% for CF that contained 0.25, 0.5 and 1% CNE, respectively. The largest value of the elasticity modulus (EM) was observed for 2% CF with 0.25% CNE. All films exhibited a yellow appearance (b*), but the CNE content had a marked impact on the coloration of the films. The CNE recoveries of the CF films (1 and 2%) with 1% of CNE were high (43 and 67%). The antioxidant activities indicated that the incorporation of 1% CNE into CF films (1 and 2%) increased the antioxidant activity. The protective effects of the films with and without CNE on erythrocytes were very strong (36–72% hemolysis inhibition). These results suggest there are potential applications for CF-CNE films as active packaging for the preservation of food products. 相似文献
4.
Jesús R. Rodríguez-Núñez Tomás J. Madera-Santana Dalia I. Sánchez-Machado Jaime López-Cervantes Herlinda Soto Valdez 《Journal of Polymers and the Environment》2014,22(1):41-51
The addition of plasticizers to biopolymer films is a good method for improving their physicochemical properties. The aim of this study was to evaluate the effect of chitosan (CHI) blended with two hydrophilic plasticizers glycerol (GLY) and sorbitol (SOR), at two concentrations (20 and 40 wt%) on their mechanical, thermal, barrier, structural, morphological and antimicrobial properties. The chitosan was prepared through the alkaline deacetylation of chitin obtained from fermented lactic from shrimp heads. The obtained chitosan had a degree of deacetylation (DA) of 84 ± 2.7 and a molecular weight of 136 kDa, which indicated that a good film had formed. The films composed of CHI and GLY (20 wt%) exhibited the best mechanical properties compared to the neat chitosan film. The percentage of elongation at break increase to over 700 % in the films that contained 40 % GLY, and these films also exhibited the highest values for the water vapor transmission rate (WVTR) of 79.6 ± 1.9 g m2 h?1 and a yellow color (b o = 17.9 ± 2.0) compared to the neat chitosan films (b o = 8.8 ± 0.8). For the structural properties, the Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses revealed an interaction in the acetamide group and changes in the crystallinity of plasticized films. The scanning electron micrographs revealed that all formulations of the chitosan films were smooth, and that they did not contain aggregations, pores or microphase separation. The thermal analysis using differential scanning calorimetry (DSC) revealed a glass transition temperature (Tg) of 130 °C for neat chitosan film, but the addition of SOR or GLY elicited a decrease in the temperature of the peak (120 °C). In addition, the antimicrobial activity of the chitosan films was evaluated against Listeria monocytogenes, and reached a reduction of 2 log after 24 h. The plasticizer concentration of 20 % GLY is sufficient for obtaining flexible chitosan films with good mechanical properties, and it could serve as an alternative as a packaging material to reduce environmental problems associated with synthetic packaging films. 相似文献
5.
Films of whey protein and chitosan acetic acid salt have lower oxygen permeability than, for example, ethylene-co-vinylalcohol under dry conditions, but water and water vapor seriously impair the gas barrier properties. To reduce the oxygen permeability at 90% relative humidity and the water-vapor transmission rate at 100% relative humidity, the films were coated with an alkyd, a beeswax compound, or a nitrocellulose lacquer. Permeability and transmission rate measurements were performed in accordance with standard methods and showed that the beeswax compound and the nitrocellulose were appropriate as water-vapor barriers. Overall migration to water was measured after 10 days exposure time, with the coated surface exposed to the water, showing that the alkyd-coated and the nitrocellulose-coated films were both below the safety limit for food contact. Water absorbency tests, performed by the Cobb method, showed that the films coated with the beeswax compound or with nitrocellulose lacquer exhibit lower absorbency than the alkyd-coated films. 相似文献
6.
Natural polymer, chitosan was obtained from dried prawn shell waste through the preparation of chitin and was characterized. Thin film of chitosan was prepared by casting method from its 2% chitosan solution. Mechanical properties like tensile strength (TS), elongation at break (Eb) of chitosan film were studied. Five formulations were developed with 2-ethyl-2-hydroxy methyl-1,3-propandiol trimethacrylate (EHMPTMA), a trifunctional monomer and 2-ethylhexyl acrylate (EHA), a monofunctional monomer in the presence of photoinitiator Darocur-1664 (2%). The film was soaked in those monomer formulations in dissimilar soaking times and irradiated under UV-radiation at different radiation intensities for the improvement of the properties of chitosan film. The cured films were then subjected to various characterization tests like TS, Eb, polymer loading (PL), water absorbency, gel content etc. The formulation, containing 25% EHMPTMA and 73% EHA showed the best performance at 10th UV passes of UV radiation for 4 min soaking time. 相似文献
7.
Preparation and Properties of Carboxymethyl Cellulose (CMC)/Sodium alginate (SA) Blends Induced by Gamma Irradiation 总被引:1,自引:0,他引:1
Carboxymethyl Cellulose (CMC)/Sodium alginate (SA) blends have been prepared by casting solution method. The effect of different irradiation doses (2.5, 5, 10, 15, and 20 kGy) of gamma rays on the physical properties of the CMC/SA blend containing different ratios of SA (20, 30, and 40 %) such as gel fraction (%) and swelling (%) of CMC/SA blends were investigated. It was found that the gel fraction increases with increasing irradiation dose up to 20 kGy while the swelling of CMC/SA blend films tends to increase with increasing SA content and reduced with increasing irradiation doses. Mechanical and thermal properties of the blend films were improved when CMC content increased and with increasing irradiation dose up to 20 kGy. Morphology of the blend was examined by SEM, which indicates compatibility between CMC and SA. The blend rich in SA content possessed good antimicrobial activity against Gram +ve Bacteria (Bacillus subtilis). 相似文献
8.
Rashidul Alam Mubarak A. Khan Ruhul A. Khan Sushanta Ghoshal M. I. H. Mondal 《Journal of Polymers and the Environment》2008,16(3):213-219
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and
elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer
and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were
soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical
properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption
and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance
at 20th UV pass for 4 min soaking time. 相似文献
9.
P. I. C. Claro A. R. S. Neto A. C. C. Bibbo L. H. C. Mattoso M. S. R. Bastos J. M. Marconcini 《Journal of Polymers and the Environment》2016,24(4):363-371
Poly(lactic acid) (PLA) is a biodegradable polymer that exhibits high elastic modulus, high mechanical strength, and feasible processability. However, high cost and fragility hinder the application of PLA in food packaging. Therefore, this study aimed to develop flexible PLA/acetate and PLA/chitosan films with improved thermal and mechanical properties without the addition of a plasticizer and additive to yield extruder compositions with melt temperatures above those of acetate and chitosan. PLA blends with 10, 20, and 30 wt% of chitosan or cellulose acetate were processed in a twin-screw extruder, and grain pellets were then pressed to form films. PLA/acetate films showed an increase of 30 °C in initial degradation temperature and an increase of 3.9 % in elongation at break. On the other hand, PLA/chitosan films showed improvements in mechanical properties as an increase of 4.7 % in elongation at break. PLA/chitosan film which presented the greatest increase in elongation at break proved to be the best candidate for application in packaging. 相似文献
10.
Majid Soleimani Lope G. Tabil Ike Oguocha Jimmy Fung 《Journal of Polymers and the Environment》2018,26(2):532-542
The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved. 相似文献
11.
Riham R. Mohamed Nadia A. Rizk Bothaina M. Abd El Hady Heba M. Abdallah Magdy W. Sabaa 《Journal of Polymers and the Environment》2017,25(3):667-682
Crosslinked carboxymethyl chitosan (CMCh)/poly(ethylene glycol) (PEG) nanocomposites were synthesized using terephthaloyl diisothiocyanate as a crosslinking agent, in presence of montmorillonite (MMT), in different weight ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PEG nanocomposites increased the swell ability. Metal ions adsorption had also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non-crosslinked CMCh. Antimicrobial activity was examined against Gram-positive bacteria (S. aureus (RCMB 010027) and S. Pyogens (RCMB 010015), Gram-negative bacteria (E. coli (RCMB 010056), and also against fungi (A. fumigates (RCMBA 02564, G. candidum (RCMB 05096) and C. albicans (RCMB 05035). Data indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation studies were carried out in simulated body fluid for different time periods in order to find out the degradation index. Results showed that weight loss (%) of most of the nanocomposites increased as a function of incubation time. 相似文献
12.
Extruded Cornstarch-Glycerol-Polyvinyl Alcohol Blends: Mechanical Properties, Morphology, and Biodegradability 总被引:3,自引:0,他引:3
Lijun Mao Syed Imam Sherald Gordon Patrizia Cinelli Emo Chiellini 《Journal of Polymers and the Environment》2000,8(4):205-211
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T
g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation. 相似文献
13.
H. N. Cheng Catrina Ford Francis J. Kolpak Qinglin Wu 《Journal of Polymers and the Environment》2018,26(10):4114-4123
Although hemicellulose is found widely in nature, it is currently under-utilized as a raw material for commercial applications. It would be desirable to find new uses for hemicellulose in order to add value to this agro-based material. A common type of hemicellulose is xylan, which is found in a number of wood species and in cotton. In this work we prepared cationic and anionic xylan derivatives and characterized them by 13C NMR, FT-IR, size exclusion chromatography (SEC), thermal analysis, and rheology. In particular, the 13C NMR spectra of carboxymethyl xylan (CMX) and quaternary ammonium-adducted xylan (QAX) were fully assigned with the help of samples with different degrees of substitution. SEC indicated that the beechwood xylan showed a bimodal molecular weight distribution, but with derivatization the distribution tended to become unimodal. Thermal analysis and rheology studies did not uncover any surprises; the solution of xylan and its derivatives exhibited mostly Newtonian behavior. The blends of CMX and QAX produced a precipitate at almost all ratios, indicating the formation of a polyelectrolyte complex. When cationic and anionic xylan samples were added together to paper, the paper dry strength increased. Thus, the combination of cationic/anionic xylan may be of interest in selected applications. 相似文献
14.
G. G. D. Silva P. J. A. Sobral R. A. Carvalho P. V. A. Bergo O. Mendieta-Taboada A. M. Q. B. Habitante 《Journal of Polymers and the Environment》2008,16(4):276-285
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films. 相似文献
15.
R. Scaffaro N. Tz. Dintcheva R. Marino F. P. La Mantia 《Journal of Polymers and the Environment》2012,20(2):267-272
In this paper, the processability and the performance of a biodegradable polymer, Mater-Bi, and of its blends with either a sample of poly (hydroxy alkanoates) (PHA) or with bacterial biomass containing PHAs were compared. Adding PHA or directly the biomass containing it allows improving the processability of the matrix. Moreover, the mechanical behaviour of the systems was compared considering two different preparation methods, namely compression and injection moulding. The injection moulded samples show poorer mechanical performances than those of the compression moulded systems. The impact strength significantly improves when PHA is added while it reduces when bacterial biomass is used instead. In this latter case this was likely due to the easier propagation of micro-cracks during the impact tests. 相似文献
16.
Functional Properties of Extruded Starch Acetate Blends 总被引:1,自引:0,他引:1
Starch acetate, with degree of substitution of 2, was blended with 0, 7.5 and 15% polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) or Mater-Bi ZF03U (MBI) and 10%, 13%, or 16% (d.b.) ethanol and twin-screw extruded at 160°C barrel temperature. Physical characteristics of the extrudates, such as radial expansion ratio, unit and bulk densities, and of the mechanical properties, including unit spring index and bulk spring index, were measured. Type of polymer, polymer content, and ethanol content significantly affected the physical characteristics and mechanical properties. The sample extruded with 7.5% PLA and 13% ethanol had the highest expansion ratio and bulk spring index. The sample with 15% MBI and 16% ethanol had the lowest unit density, while the sample with 7.5% PLA and 16% ethanol had lowest bulk denisty. The highest unit spring index was expressed in the sample containing 7.5% PLA and 10% ethanol. 相似文献
17.
Chang-Hyeon Kim Kyung-Moon Jung Jung-Soo Kim Jung-Ki Park 《Journal of Polymers and the Environment》2004,12(3):179-187
Modified polycaprolactone was synthesized by melt reaction of PCL and reactive monomers such as glycidyl methacrylate (GMA) and maleic anhydride (MAH) in the presence of benzoyl peroxide in Brabender mixer. MAH showed a different grafting phenomenon compared to GMA. The reaction mechanism was discussed with different reactive monomers. Reactive blends of the PCL-g-GMA and the gelatinized starch with glycerin were prepared and their mechanical properties and biodegradabilities were investigated. Reactive blends of PCL-g-GMA and starch showed well-dispersed starch domain in the matrix and better mechanical strength than the unmodified PCL/starch blend. However, the reaction between PCL-g-GMA and starch induced a crosslinking during the reactive blending and this crosslinking in the blend lowered the biodegradation of the blend during the composting test. The biodegradability was investigated by the weight loss and surface morphology change of the blend in the composting medium. 相似文献
18.
Effects of UV/photo-initiator treatments on crystal formation and properties of polylactide (PLLA) films are investigated. Camphorquinone and riboflavin photo-initiator solutions in methanol are employed in the treatment of amorphous quenched PLLA films. Results from FTIR, ATR-FTIR, DSC, XRD, and SEM show evidence of crystalline domain formation dispersed throughout the film. 1H NMR and GPC results suggest that the molecular weights of the polymer slightly decrease after the treatment. This indicates that the treatment leads to a diffusion of the photo-initiators molecules through the film matrix, resulting in a low degree of PLLA chain scissions, and formation of carboxylic acid and hydroxyl polar end groups. This, in turn, induces PLLA crystallization, which imposes profound effects on surface wettability and physical and mechanical properties of the samples. The process can be applied in optimizing properties of PLLA films with shorter treatment times, compared to other methods, which is suitable for use in various fields; especially those that require specific characteristics like biomedical, packaging and environmental applications. 相似文献
19.
Journal of Polymers and the Environment - In this study, a novel bead form IPN type resin comprising poly (2-Dimethylaminoethyl) methacrylate and carboxymethyl chitosan networks with a high dye... 相似文献
20.
Studies on the moisture sorption characteristics of chitosan/polyethylene oxide (PEO) blended films have been carried out
at 27 °C for water activity (a
w) from 0.1 to 0.9. The sorption data at different a
w were used to fit 12 different sorption isotherm models proposed in the literature. The model constants were determined by
linear fitting of the sorption equations. The ranges of applicability of water activity for the isotherms reported in the
article lie between 0.11 to 0.44 (monomolecular layer) for the BET model and between 0.11 to 0.86 (monolayer & multilayer’s)
for Smith, Caurie, Bradley and Oswin. The water activity for Halsey and Chung & Pfost models lies between 0.44 to 0.86 (multilayer)
and 0.33 to 0.86 for Henderson and Freundlich models and 0.11 to 0.65 for Kuhn, Linear and Iglesias & Chirife models. The
high coefficient of determination R
2 (ranges from 0.82 to 1) confirms the applicability of the equations employed. The study on the application of such water
activity data of chitosan/PEO blended films on different model equations will be helpful in prediction of durability and functional
behavior of moisture sensitive biopolymeric films 相似文献