首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution gamma-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured gamma-ray spectra, elemental concentrations were determined for thorium (range from 2.5 x 10(-3) to 9.8 microg g(-1)), uranium (from 8.1 x 10(-4) to 3.2 microg g(-1)) and potassium (from 1.3 x 10(-4) to 1.9%). The arithmetic mean values (A.M. +/- S.D.) calculated from all samples are: (1.2+/-1.7 microg g(-1)), (0.6+/-0.7) microg g(-1), and (0.4+/-0.3%), for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 microg g(-1) (Th), 2.8 microg g(-1) (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8 x 10(3) and 1.4 x 10(3), respectively.  相似文献   

2.
A study on natural radiation exposure in different realistic living rooms   总被引:1,自引:0,他引:1  
In the first part of the paper, the factors affecting 222Rn properties in 25 different realistic living rooms (with low ventilation rates) of different houses in El-Minia City (Upper Egypt) have been studied; they included the activity concentration of 222Rn gas (C(o)), the unattached fraction (f(p)) of 218Po and 214Pb, the unattached potential alpha energy concentration (PAEC) and the equilibrium factor (F). The activity distributions of unattached 218Po and 214Pb as well as for the PAEC were determined. With a dosimetric model calculation [ICRP, 1994b. Human Respiratory Tract Model For Radiological Protection. Pergamon Press, Oxford. ICRP Publication 66] the total deposition fraction of unattached 218Po and 214Pb in human respiratory tract was evaluated to determine the total equivalent dose. An electrostatic precipitation method and a wire screen diffusion battery technique were both employed for the determination of 222Rn gas concentration and its unattached decay products, respectively. The mean activity concentration of 222Rn gas (C(o)) was found to be 110+/-20 Bq m(-3). The mean unattached activity concentrations of 218Po and 214Pb were found to be 0.6 and 0.35 Bq m(-3), respectively. A mean unattached fraction (f(p)) of 0.09+/-0.01 was obtained at a mean aerosol particle concentration (Z) of (2.9+/-0.23) x 10(3)cm(-3). The mean equilibrium factor (F) was determined to be 0.31+/-0.02. The mean PAEC of unattached 218Po and 214Pb was found to be 8.74+/-2.1 Bq m(-3). The activity distributions of 218Po and 214Pb show mean activity median diameters (AMD) of 1.5 and 1.85 nm with mean geometric standard deviations (SD) of 1.33 and 1.45, respectively. The mean activity distribution of the PAEC shows an AMD of 1.65 nm with a geometric standard deviation of 1.25. At a total deposition fraction of about 97% the total equivalent dose to the lung was determined to be about 133 microSv. The second part of this paper deals with a study of natural radionuclide contents of samples collected from the building materials of the rooms under investigations in part one. Analyses were performed in Marinelli beakers with a gamma multichannel analyzer equipped with a NaI(Tl) detector. The samples revealed the presence of the uranium-radium and thorium radioisotopes as well as 40K. Nine gamma-lines of the natural radioisotopes corresponding to 212Pb, 214Pb, 214Bi, 228Ac, 40K and 208Tl were detected and measured. The activity concentrations of 226Ra, 232Th and 40K were determined with mean activity concentrations of 58+/-19, 31+/-11 and 143+/-62 Bq kg(-1), respectively. These activities amount to a radium equivalent (Ra(eq)) of 113 Bq kg(-1) and to a mean value of external hazard index of 0.31.  相似文献   

3.
Iodine-129 (T1/2 = 1.57 x 10(7) yr) concentrations have been determined by accelerator mass spectrometry in rainwater samples taken at Seville (southwestern Spain) in 1996 and 1997. This technique allows a reduction in the detection limits for this radionuclide in comparison to radiometric counting and other mass spectrometric methods such as ICP-MS. Typical 129I concentrations range from 4.7 x 10(7) 129I atoms/l (19.2%) to 4.97 x 10(9) 129I atoms/l (5.9%), while 129I depositions are normally in the order of 10(8)-10(10) atoms/m2d. These values agree well with other results obtained for recent rainwater samples collected in Europe. Apart from these, the relationship between 129I deposition and some atmospheric factors has been analyzed, showing the importance of the precipitation rate and the concentration of suspended matter in it.  相似文献   

4.
Soil-to-plant transfer factors (TF) of radiocaesium (137Cs) were determined under field condition for grassy vegetation grown in Bangladesh at contaminated land in the Atomic Energy Research Establishment (AERE) campus. TF values for rice, grass and grassy/root vegetations grown in the same type of soil were also measured under pot condition. TF values of 137Cs for grassy vegetation (2.4 x 10(-2) -4.2 x 10(-2) with an average of 3.1 x 10(-2) +/-0.005) obtained under field condition were slightly lower than the values for grass and grassy/root vegetations (2.9 x 10(-2) -6.6 x 10(-2) with an average of 4.8 x 10(-2) +/-0.01 for grass and grassy vegetations and 2.3 x 10(-2) -5.6 x 10(-2) with an average of 4.0 x 10(-2) +/-0.009 for root vegetations, respectively) obtained under pot condition. However, TF values (9.0 x 10(-3) -2.6 x 10(-2) with an average of 1.9 x 10(-2) +/-0.004) obtained for rice were about a factor of 4 lower than the values obtained for grass and grassy/root vegetations. When the properties of the AERE soils as input parameters were used in the soil-plant transfer model of Absalom, the estimated TF values (4.5 x 10(-2) -6.7 x 10(-2) with an average of 5.3 x 10(-2) +/-0.006) were consistent with the measured values obtained for grass and grassy vegetations under pot condition, however, the model overestimates the TF values for rice.  相似文献   

5.
We analyzed the radiological and chemical risks of uranium in groundwater. The total sample number over 4 years was 498. There were several use patterns of groundwater in Korea, but we considered the risk only for drinking water. The geometric mean of uranium concentration in 10 areas in Korea was 0.17 microg x l(-1). The excess cancer risks were in the 10(-7) level in the radiological risk aspect and the hazard quotient was 0.005 in the chemical risk aspect. Therefore, we could conclude that an adverse health risk is unlikely to be posed due to exposure to uranium. However, the concentration of uranium must be monitored periodically and adequate action taken in the few and small areas that contain high uranium levels in groundwater.  相似文献   

6.
222Rn, 226Ra, 228Ra and U were determined in a total of 552 groundwater samples collected throughout Fujian Province of China. The geometric mean concentrations of 222Rn, 226Ra, 228Ra and total U in the groundwater were 147.8 kBq m-3, 12.7 Bq m-3, 30.2 Bq m-3 and 0.54 microgram kg-1, respectively. High groundwater 222Rn was explained by the predominantly granitic rock aquifers in Fujian. A lifetime risk of 1.7 x 10(-3) was estimated for the ingestion of groundwater 222Rn. High ratios of 228Ra to 226Ra contents (geometric mean of 2.4) and their disproportion suggest that 228Ra should also be measured in the assessment of population doses from drinking water in the regions of high rock or soil 232Th. No significant correlation between the 222Rn concentrations in groundwater and air was found.  相似文献   

7.
7Be to 210Pb concentration ratios in ground level air on two monitoring stations (MS1 and MS2) in Belgrade area were determined from 1996 to 2001. The average monthly concentrations of 7Be in ground level air were in the range of 0.6-18.3 mBq/m3 and exhibited one or two summer/early fall maxims and one minimum in winter. The maximum concentrations for 210Pb were generally observed in the fall, with the average concentrations in the range of 1.09 x 10(-4) to 30.9 x 10(-4) Bq/m3. The 7Be/210Pb ratios were in the range of 1.7-12.7 (MS1) and 1.8-11.3 (MS2), with summer maxims and late fall/winter minimums. The mean Radionuclides Loading Indices values approach zero except for 1996/1997 (MS1) and 2001 (MS2) due to higher concentrations of 7Be and 210Pb. The mean monthly concentrations of both radionuclides exhibited lognormal distributions. There is significant correlation between the 7Be/210Pb activities ratio and the air stability classes A + B + C for both monitoring stations (correlation coefficients 0.61-0.65), and no correlation with D class and E + F classes. Correlation was found between the activity of 7Be and air stability classes A + B + C (0.46-0.68), and E + F (0.38 for MS1), while for 210Pb, a moderate correlation (0.38-0.40) was found with the E + F air stability classes.  相似文献   

8.
During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived (222Rn) decay products 214Pb and 210Pb. The samples were taken by using a single-filter technique and gamma-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214Pb and 210Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214Pb and 210Pb within the whole year was found to be 1.4+/-0.27 Bq m(-3) and 1.2+/-0.15 mBq m(-3), respectively. Different 210Pb:214Pb activity ratios during the year varied between 1.78 x 10(-4) and 1.6 x 10(-3) with a mean value of 8.9 x 10(-4) +/- 7.6 x 10(-5). From the ratio between the activity concentrations of the radon decay products 214Pb and 210Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5+/-0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air.  相似文献   

9.
The transfer of 90Sr to rice plants following its acute ground deposition was examined experimentally in a greenhouse. Lysimeters were flooded after being filled with the soil monoliths from 12 paddy fields. A solution of 90Sr was applied to the standing water in the flooded lysimeters at the pre-transplanting stage or booting stage. Applied 90Sr was mixed with the topsoil only after the pre-transplanting application (PTA). The transfer was quantified with the areal transfer factor (TF(a), m2 kg(-1)-dry) defined as the ratio of the plant concentration to the initial ground deposition. In the PTA, the first-year TF(a) values in the 12 soils were in the range of 8.2 x 10(-3) -2.1 x 10(-2) and 1.7 x 10(-4) -3.6 x 10(-4) for the straws and hulled seeds, respectively. The TF(a) values from the booting-stage application (BSA) were higher than those from the PTA by a factor of up to four. The ratios of the seed TF(a) to the straw TF(a) were, on the whole, higher in the BSA. The 90Sr TF(a) in the PTA was negatively correlated with the soil pH and, to a lesser degree, the exchangeable Ca content. In the second year, the TF(a) in the PTA reduced to 53-90% of that in the first year. A more significant reduction, in general, occurred in a sandier soil. Based on the four consecutive years' transfer data, an overall half-time of the 90Sr TF(a) was estimated to be 2.2 years.  相似文献   

10.
Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.  相似文献   

11.
A systematic survey of dissolved uranium activity was carried out in the Seine and the Marne over one year. A small watershed, the Grand Morin, included in the Seine one, was also investigated from stream to medium-sized rivers. The Melarchez stream exhibits low but variable dissolved 238U levels (3.3 +/- 2.0 mBq l(-1)). Thereafter, uranium activities show a rapid increase to reach, from the Grand Morin River, a rather constant range (8-11 mBq l(-1)). On the Marne before the confluence with the Seine, dissolved 238U is nearly invariable (9.1 +/- 0.8 mBq l(-1)), for flow rates comprised between 60 and 423 m3 s(-1). Dissolved 238U in the Seine corresponds to almost triple the global mean riverine uranium concentration. In the estuary of the Seine, uranium shows a gradual increase, resulting from conservative mixing of river with sea waters.  相似文献   

12.
Specific activities of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured by means of gamma-ray spectrometry in surface soil samples collected from the city of Ptolemais, which is located near lignite-fired power plants. The mean activity values for (238)U, (226)Ra, (232)Th and (40)K were found to be 42+/-11, 27+/-6, 36+/-5 and 496+/-56 Bq kg(-1), respectively. These values fall within the range of typical world and Greek values for soil. The indoor radon concentration levels, which were also measured in 66 dwellings by means of SSNTD, ranged from 12 to 129 Bq m(-3), with an average value of 36+/-2 Bq m(-3). This value is close to world and Greek average values for indoor radon concentrations. The total effective dose due to outdoor external irradiation of terrestrial origin and to indoor internal irradiation from the short-lived decay products of (222)Rn was estimated to be 1.2 mSv y(-1) for adults, which is lower than the global effective dose due to natural sources of 2.4 mSv y(-1).  相似文献   

13.
Radon levels were measured in 119 groundwater samples collected throughout the active volcanic area of Mt. Etna by means of a portable Lucas-type scintillation chamber. The measured activity values range from 1.8 to 52.7 Bq l(-1). About 40% of the samples exceed the maximum contaminant level of 11 Bq l(-1) proposed by the USEPA in 1991. The highest radon levels are measured in the eastern sector of the volcano, which is the seismically most active zone of the volcano. On the contrary the south-western sector, which is both seismically active and a site of intense magmatic degassing, display lower radon levels. This is probably due to the formation of a free gas phase (oversaturation of CO(2)) that strips the radon from the water. Comparison of the data gathered at Mt. Etna with those of other areas indicates that (222)Rn activity in groundwater is positively correlated with both the content of parent elements in the aquifer rocks and the temperature of the geothermal systems that interacts with the sampled aquifers.  相似文献   

14.
Cosmic-ray-produced (CP) nuclides with half-lives shorter than 21h were measured in rainwater by ultra-low-background gamma spectrometry at Ogoya Underground Laboratory. As levels of CP nuclides are extremely low and their half-lives are very short, quick sampling methods for a large volume of rainwater and rapid chemical separations by ion exchange method were developed. The nuclides measured were short-lived (24)Na, (28)Mg, (38)S, (38)Cl, (39)Cl, as well as nuclides with longer half-lives (7)Be and (22)Na. The number of atoms of CP nuclides in rainwater were evaluated to range from 30 to 1500L(-1) for (24)Na (n=16, mean; 520 [6.7mBqL(-1)]), 80 to 600L(-1) for (28)Mg (n=13, mean; 260 [2.4mBqL(-1)]), 400 to 1900L(-1) for (39)Cl (n=6, mean; 1200 [250mBqL(-1)]), 1x10(6) to 4x10(7)L(-1) for (7)Be (n=16, mean; 7x10(6) [1.05BqL(-1)]) and 2x10(3) to 1x10(5)L(-1) for (22)Na (n=9, mean; 2x10(4) [0.2mBqL(-1)]).  相似文献   

15.
Radon levels in atmospheric and aquatic systems in Cyprus have recently been measured using the radon monitor Alpha Guard. Indoor and outdoor radon levels were obtained in situ, whereas analysis of radon concentrations in water was performed using tap and ground water samples collected from several areas of the island. The average value for outdoor and indoor radon concentration is 11+/-10 and 7+/-6 Bq m(-3), respectively, and for tap and ground water 0.4 Bq l(-1) and 1.4 Bq l(-1), respectively. From these data the annual dose equivalent of airborne radon to the Cypriot population is about 0.19 mSv y(-1), which is quite low compared to the total dose equivalent of natural and man-made ionising radiation in Cyprus. Radon levels in aquatic systems are relatively low due to an exhaustive utilisation of ground water resources and also to the increased input of desalinated sea water in the water distribution network and eventually into the ground water reservoirs.  相似文献   

16.
A technique for the isolation of thorium (Th), plutonium (Pu), americium (Am), uranium (U) and strontium (Sr) isotopes from various environmental matrices has been adapted from a previously published method specific to water samples (Maxwell, 2006). Separation and isolation of the various elemental fractions from a single sub-sample is possible, thereby eliminating the need for multiple analyses.The technique involves sample dissolution, concentration via calcium phosphate co-precipitation, rapid column extraction using TEVA™, TRU™ and Sr-Spec™ resin cartridges, alpha spectrometry for Th, Pu, U and Am and Cerenkov counting for Sr.Various standard reference materials were analysed and chemical yields are in the range of 70-80% for Th, Am, U and Sr and 50-60% for Pu. Sample sizes of up to 10 L for water, 5 g for dry soil and sediment and 10 g for dry vegetation and seaweed can be processed using this technique.  相似文献   

17.
Inter-plant concentration ratios (IPCR) [Bqg(-1)(137)Cs in coral atoll tree food crops/Bqg(-1)(137)Cs in leaves of native plant species whose roots share a common soil volume] can replace transfer factors (TF) to predict (137)Cs concentration in tree food crops in a contaminated area with an aged source term. The IPCR strategy has significant benefits relative to TF strategy for such purposes in the atoll ecosystem. IPCR strategy applied to specific assessments takes advantage of the fact that tree roots naturally integrate (137)Cs over large volumes of soil. Root absorption of (137)Cs replaces large-scale, expensive soil sampling schemes to reduce variability in (137)Cs concentration due to inhomogeneous radionuclide distribution. IPCR [drinking-coconut meat (DCM)/Scaevola (SCA) and Tournefortia (TOU) leaves (native trees growing on all atoll islands)] are log-normally distributed (LND) with geometric standard deviation (GSD)=1.85. TF for DCM from Enewetak, Eneu, Rongelap and Bikini Atolls are LND with GSDs of 3.5, 3.0, 2.7, and 2.1, respectively. TF GSD for Rongelap copra coconut meat is 2.5. IPCR of Pandanus fruit to SCA and TOU leaves are LND with GSD=1.7 while TF GSD is 2.1. Because IPCR variability is much lower than TF variability, relative sampling error of an IPCR field sample mean is up 6- to 10-fold lower than that of a TF sample mean if sample sizes are small (10-20). Other IPCR advantages are that plant leaf samples are collected and processed in far less time with much less effort and cost than soil samples.  相似文献   

18.
Results of groundwater and seawater analyses for radioactive ((3)H, (222)Rn, (223)Ra, (224)Ra, (226)Ra, and (228)Ra) and stable (D and (18)O) isotopes are presented together with in situ spatial mapping and time series (222)Rn measurements in seawater, direct seepage measurements using manual and automated seepage meters, pore water investigations using different tracers and piezometric techniques, and geoelectric surveys probing the coast. This study represents first time that such a new complex arsenal of radioactive and non-radioactive tracer techniques and geophysical methods have been used for simultaneous submarine groundwater discharge (SGD) investigations. Large fluctuations of SGD fluxes were observed at sites situated only a few meters apart (from 0cmd(-1) to 360cmd(-1); the unit represents cm(3)/cm(2)/day), as well as during a few hours (from 0cmd(-1) to 110cmd(-1)), strongly depending on the tidal fluctuations. The average SGD flux estimated from continuous (222)Rn measurements is 17+/-10cmd(-1). Integrated coastal SGD flux estimated for the Ubatuba coast using radium isotopes is about 7x10(3)m(3)d(-1) per km of the coast. The isotopic composition (deltaD and delta(18)O) of submarine waters was characterised by significant variability and heavy isotope enrichment, indicating that the contribution of groundwater in submarine waters varied from a small percentage to 20%. However, this contribution with increasing offshore distance became negligible. Automated seepage meters and time series measurements of (222)Rn activity concentration showed a negative correlation between the SGD rates and tidal stage. This is likely caused by sea level changes as tidal effects induce variations of hydraulic gradients. The geoelectric probing and piezometric measurements contributed to better understanding of the spatial distribution of different water masses present along the coast. The radium isotope data showed scattered distributions with offshore distance, which imply that seawater in a complex coast with many small bays and islands was influenced by local currents and groundwater/seawater mixing. This has also been confirmed by a relatively short residence time of 1-2 weeks for water within 25km offshore, as obtained by short-lived radium isotopes. The irregular distribution of SGD seen at Ubatuba is a characteristic of fractured rock aquifers, fed by coastal groundwater and recirculated seawater with small admixtures of groundwater, which is of potential environmental concern and has implications on the management of freshwater resources in the region.  相似文献   

19.
The concentration of radon-222 has been monitored since 1995 in the atmosphere of a 2 m transverse dimension, 128 m long, dead-end horizontal tunnel located in the French Alps, at an altitude of 1600 m. Most of the time, the radon concentration is stable, with an average value ranging from 200 Bq m(-3) near the entrance to about 1000 Bq m(-3) in the most confined section, with an equilibrium factor between radon and its short-lived decay products varying from 0.61 to 0.78. However, radon bursts are repeatedly observed, with amplitudes reaching up to 36 x 10(3) Bq m(-3) and durations varying from one to several weeks, with similar spatial variations along the tunnel as the background concentration. These spatial variations are qualitatively interpreted in terms of natural ventilation. Comparing the radon background concentration with the measured radon exhalation flux at the wall yields an estimate of 8+/-2 x 10(-6) s(-1) (0.03+/-0.007 h(-1)) for the ventilation rate. The hypothesis that the bursts could be due to transient changes in ventilation can be ruled out. Thus, the bursts are the results of transient increased radon exhalation at the walls, that could be due to meteorological effects or possibly combined hydrological and mechanical forcing associated with the water level variations of the nearby Roselend reservoir lake. Such studies are of interest for radiation protection in poorly ventilated underground settings, and, ultimately, for a better understanding of radon exhalation associated with tectonic or volcanic processes.  相似文献   

20.
Both soil and plant samples of nine different plant species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed for the plant uptake and translocation of 238U, 226Ra and 232Th. Substantial differences were observed in the soil-plant transfer factor (TF) among these radionuclides and plant species. Lupine (Lupinus albus) exhibited the highest uptake of 238U (TF value of 3.7x10(-2)), while Chinese mustard (Brassica chinensis) had the least (0.5x10(-2)). However, in the case of 226Ra and 232Th, the highest TFs were observed for white clover (Trifolium pratense) (3.4x10(-2)) and ryegrass (Lolium perenne) (2.1x10(-3)), respectively. 232Th in the tailings/soil mixture was less available for plant uptake than 226Ra or 238U, and this was especially evident for Chinese mustard and corn (Zea mays). The root/shoot (R/S) ratios obtained for different plants and radionuclides shown that Indian mustard had the smallest R/S ratios for both 226Ra (5.3+/-1.2) and 232Th (5.3+/-1.7), while the smallest R/S ratio for 238U was observed in clover (2.8+/-0.9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号