首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
根据两年研制开发的成果,用再生胶制成涂复再生胶,在柔性防水卷材中得到了大量应用,抗老化和防渗漏性能优良,为再生胶应用开辟了新的途径.  相似文献   

2.
将压电陶瓷生产过程中产生的废料应用于氯化丁基橡胶阻尼减振材料,既解决了压电陶瓷废料的处理问题,又制作出了性能更好的压电复合氯化丁基橡胶阻尼减振材料.  相似文献   

3.
从道路建设与防水卷材制造两方面,描述了我国废橡胶粉在沥青改性用途中的研究及应用现状。大量国内试验及应用实例表明,与普通石油沥青相比,胶粉改性沥青的针入度、延度、软化点、温度敏感性、稳定性和抗老化性等性能均得到了改善。此外,较之其他种类的沥青改性剂,废橡胶粉成本低,具有环保与资源节约的优点,对我国循环经济的发展具有重要意义。  相似文献   

4.
陈正夫  张月贞 《化工环保》1993,13(3):168-170
应用大孔型树脂吸附和液-液萃取相结合的前处理及色谱/离子阱质谱联用技术CC/ITD),分离测定了再生胶脱硫废水中有机污染物,并对分析结果进行了讨论。  相似文献   

5.
将压电陶瓷生产过程中不同生产阶段产生的废品应用于氯化丁基橡胶阻尼减振材料,并比较了它们对阻尼减振性能的影响.  相似文献   

6.
随着我国废杂铜再生行业的快速发展,废杂铜在拆解和回收过程中环境污染问题日益突出,为了经济与环境的协调发展,介绍了我国废杂铜回收现状及工艺、国内外废杂铜再生特点和环境污染问题,并对其环境防治进行探讨.  相似文献   

7.
开发了除油-苛化-脱硫组合技术处理乙烯废碱液工艺,考察了影响各级处理效果的主要因素.实验结果表明:经石英砂-聚丙烯腈纤维膜-强碱性阴离子交换树脂组合装置除油后,碱液中油类物质质量浓度小于2 mg/L,NaOH,Na_2CO_3,Na_2S等无机组分含量基本不变;经苛化-脱硫处理后碱液中Na_2CO_3和Na_2S质量浓度分别小于4 430 mg/L和4 480 mg/L;再生碱液的流体力学性质及对酸性气体的吸收性能均可满足乙烯裂解气碱洗要求.  相似文献   

8.
家电使用寿命有2~10年,以中国16亿人口基数计算,产生的废家电塑料数量是惊人的.废家电塑料作为城市矿山的一部分,其具有资源和污染两方面的特性对废家电塑料进行再生利用可以降低废塑料随意堆放对环境的影响,以达到节约资源的目的。总结国外废家电塑料再生利用情况,结合国内再生利用前沿研究并对比分析,预测国内废家电塑料再生领域的发展趋势。  相似文献   

9.
研究了可一步实现废镀锡电线电缆资源化的新方法。废镀锡电线电缆在真空条件下热解液化的同时,利用离心分离的方法将熔化的锡分离出来。实验后得到铜线、含锡碳渣、热解油、热解气。热解油可作为化工原料或进一步加工成燃料,少量不可凝的热解气体经碱液吸收后收集,以便循环利用。  相似文献   

10.
综述了显像管的结构、材料组成、再生利用途径以及为再利用而开发的各种废显像管的分离技术,重点介绍了采用金属丝(带)加热冷却切割分离废显像管屏锥玻璃的工艺及试制的废显像管切割机.  相似文献   

11.
12.
以80目的废天然胶胶粉为研究对象,处理后将其分别以20%,30%的比例添加到天然混炼胶(NR)中,制备废胶粉/NR共混硫化胶;同时,通过邻苯二甲酸酐(PA)和高芳烃油对胶粉进行处理改性,制备了全胶粉弹性体。拉伸强度测试表明,对于共混胶弹性体,NR混炼胶空白样的拉伸强度为19.21 MPa,添加20%,30%比例的胶粉/NR共混硫化胶的拉伸强度可以分别达到18.03 MPa,17.23 MPa;改性后制备的全胶粉混炼胶硫化样品拉伸强度达到8.12 MPa,超过了再生胶的国标标准。同时应用扫描电子显微镜SEM分析、比较了各试样断裂面的微观结构,应用比表面仪BET和SEM表征了胶粉的表面形貌与结构,发现胶粉表面呈现"绒球"状,具有较好的表面性能。  相似文献   

13.
简要介绍废旧胶粉的制造方法,以及胶粉在实际生产、生活当中的应用现状。提高废旧胶粉的再利用技术,拓展其应用领域,是节约资源、保护环境,促进国民经济增长方式转变和可持续发展的重要措施。  相似文献   

14.
简要分析了碱性蚀刻废液的特点,总结了萃取电积法再生碱性蚀刻废液的基本原理,并进行了工程应用和环境效益分析。结果表明,碱性蚀刻再生液的蚀刻速率达60 m/min,蚀刻因子为3.5以上,回收铜纯度为99.95%。  相似文献   

15.
One kind of Chinese waste tire's sample was pyrolyzed under an inert atmosphere by using thermo-gravimetric apparatus (TGA) and differential thermal analysis (DTA). Different pyrolysis temperature ranges were determined according to the reaction transition temperature obtained by TGA and DTA. Then, at each temperature range, the pyrolysis gaseous products were analyzed by gas chromatography (GC). The influence of the temperature range on the relative yields of the major decomposition products is studied, and a mechanism for the formation of the main components was also investigated. The results indicate that pyrolysis of waste rubber follows the radical mechanism, and the major products are not seriously affected by increasing the temperature from room temperature to 420 degrees C and from 421 to 600 degrees C, but the degradation of blend rubber is different for each of the compositional elastomer.  相似文献   

16.
党和政府近几年来,高度重视知识产权建设和保护工作.废旧橡胶利用(含轮胎翻新)是再生资源利用重点行业之一.从数据库中选取2009-2019年废旧橡胶行业专利申请情况,并根据行业现状进行分类整理和分析研究,有针对性地提出行业知识产权建设和保护工作的若干建议.在引起废旧橡胶利用(含轮胎翻新)行业重视基础上,进一步推动再生资源...  相似文献   

17.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

18.
The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.  相似文献   

19.
Journal of Material Cycles and Waste Management - Excessive accumulation of rubber waste necessitates the need to revisit the effectiveness of the existing rubber waste management system. This...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号