首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
改性粉煤灰处理低浓度含磷废水的研究   总被引:1,自引:0,他引:1  
以酸改性粉煤灰为吸附剂,处理低质量浓度(1 mg/L左右)磷酸盐溶液,探讨了改性剂的种类、改性剂用量、吸附剂用量、反应时间、pH以及温度对除磷效果的影响.结果表明:(1)经过酸改性后粉煤灰的磷去除率显著提高,而且硫酸改性粉煤灰的除磷效果更好,磷去除率最高可达97.68%.(2)最佳条件:选择硫酸用量为5 mL/g进行改性,硫酸改性粉煤灰投加量为2.0g,反应时间为60 min,pH为7.2~10.8,温度为25℃(即室温).(3)改性粉煤灰对磷的吸附更符合Freundlich吸附等温模型,既有物理吸附,也有化学吸附,并以Ca、Mg氧化物与磷形成磷的沉淀物为主.  相似文献   

2.
新物化法深度处理焦化废水   总被引:1,自引:0,他引:1  
采用絮凝/吸附新物化法工艺对焦化废水进行深度处理.选用了新型复合高效絮凝剂(PFASSB),结合粉煤灰作为吸附剂,考察了絮凝剂用量、pH对絮凝效果的影响以及粉煤灰用量、pH、吸附时间、生石灰用量对吸附效果的影响.结果表明:(1)PFASSB最佳用量为10 mg/L,絮凝效果优于其他常用絮凝剂,适合处理焦化废水,处理前可以不用调节pH;(2)粉煤灰廉价易得、最佳用量为150 g/L,吸附饱和后的粉煤灰的处置可以考虑资源化再利用;(3)新物化法深度处理后的出水COD、NH3-N分别为70.21、19.37 mg/L,分别达到了<污水综合排放标准>(GB 8978-1996)的一级标准和二级标准.  相似文献   

3.
采用高炉渣对Zn(Ⅱ)进行震荡吸附实验,研究了Zn(Ⅱ)初始浓度、高炉渣投加量、接触时间、温度和溶液的初始pH对Zn(Ⅱ)吸附效果的影响。结果表明,在常温(28℃)、高炉渣粒径为100目、振荡频率为120 r/min、高炉渣吸附剂投加量为8 g/L、接触时间为60 min、废水初始pH=7和浓度为10 mg/L的条件下,Zn(Ⅱ)去除率可达到98.6%,废水中的Zn(Ⅱ)浓度由10 mg/L降至0.14 mg/L,符合国家污水综合排放标准(GB8978-1996)的一级标准。通过吸附动力学和吸附等温线实验得出,高炉渣吸附Zn(Ⅱ)的吸附曲线符合Langmuir等温式和伪二级动力学方程式。  相似文献   

4.
以改性二次锶渣为吸附剂,研究了吸附时间、吸附剂投加量、磷初始浓度和pH值对废水中磷去除效果的影响。结果表明,当总磷浓度为10mg/L,pH为7、二次锶渣投加量为15g/L时,90min内就可使废水中磷的去除率达到95%以上,总磷浓度低于污水综合排放标准的一级标准;改性二次锶渣对磷的吸附符合Langmuir等温吸附模型及准二级动力学模型。  相似文献   

5.
改性活性炭对石煤提钒废水中低浓度NH3-N和V等的吸附   总被引:1,自引:0,他引:1  
为研究石煤提钒离交尾水的深度处理技术,利用质量分数为1%、5%和10%的过氧化氢溶液对ZWY15型活性炭进行改性,得到3种改性活性炭即1%AC、5%AC和10%AC;探讨其对该废水中低浓度的NH3-N、V等的吸附效果。实验结果表明:AC或改性AC的加入可使废水的碱度升高,随着吸附时间及吸附剂投加量的增加,升高幅度增大,且不同改性AC对废水碱度提高的幅度不同;相较于未改性活性炭,过氧化氢改性活性炭对V的吸附效果明显提高,去除率最大可提高30%,对NH3-N的去除率提升约11%;当投加量为60 g/L时,10%AC可使废水中V的浓度降低至1.88 mg/L,此时废水中Cr、Cd和Zn的浓度分别降低至0.006、0.010和0.036 mg/L,均低于《钒工业污染物排放标准》(GB26452-2011)所规定的排放限值。  相似文献   

6.
粉煤灰吸附性能研究是当前环境科学领域中的一个研究热点 ,但原状粉煤灰的吸附效果不理想。本文报道的用煅烧 -碱溶法制得类沸石吸附剂的比表面积为 112 .6m2 / g、孔隙率为 83 .1% ,分别是改性前的 40 .2 2和 1.67倍。用此类沸石吸附剂来处理浓度为 2 0 0mg/L的模拟含铅废水 ,去除率为 84.87% ,吸附容量为 3 3 .94mg/ g ,分别是改性前的3 1.13和 3 1.42倍 ,处理效果优于市售一级活性炭。并用 0 .1mol/L的HCl溶液和饱和NaCl溶液再生此吸附剂 ,解吸率达到了 98%以上 ,此再生的类沸石吸附剂处理含铅废水的去除率也达到了 83 %以上  相似文献   

7.
为研究石煤提钒离交尾水的深度处理技术,利用质量分数为1%、5%和10%的过氧化氢溶液对ZWY15型活性炭进行改性,得到3种改性活性炭即1%AC、5%AC和10%AC;探讨其对该废水中低浓度的NH3-N、V等的吸附效果。实验结果表明:AC或改性AC的加入可使废水的碱度升高,随着吸附时间及吸附剂投加量的增加,升高幅度增大,且不同改性AC对废水碱度提高的幅度不同;相较于未改性活性炭,过氧化氢改性活性炭对V的吸附效果明显提高,去除率最大可提高30%,对NH3-N的去除率提升约11%;当投加量为60 g/L时,10%AC可使废水中V的浓度降低至1.88 mg/L,此时废水中Cr、Cd和Zn的浓度分别降低至0.006、0.010和0.036 mg/L,均低于《钒工业污染物排放标准》(GB26452-2011)所规定的排放限值。  相似文献   

8.
粉煤灰吸附除磷的改性研究   总被引:9,自引:4,他引:5  
研究了粉煤灰的最佳改性条件及其吸附理论模型.获得了粉煤灰用于吸附含磷量为5 mg P/L的模拟二级出水的3种改性的最佳条件(21℃):(1)0.25 mol/L盐酸改性的粉煤灰对磷的去除率为76.0%,出水含1.20 mg P/L;(2)300℃下煅烧的粉煤灰对磷的去除率为93.8%,出水中磷含量达到了0.31 mg P/L;(3)低火(119 W)改性的粉煤灰的磷去除率达95.4%,出水含0.23 mg P/L.试验结果表明:Langmuir方程能很好地解释两种改性粉煤灰的吸附动力学(R2=0.9188,S.E=0.0032),而Simple Elovieh方程在描述两者的吸附动力学试验数据上显示出优越性(R2=0.9427,S.E=0.029).  相似文献   

9.
以粉煤灰为吸附剂去除溶液中的磷,考察了其吸附除P动力学特征、热力学特征以及溶液初始pH和粉煤灰投加量对吸附除P效果的影响,并对其吸附除P机理做了初步探讨。结果表明,在给定实验条件下,粉煤灰对P具有较好的去除效果,随着初始P浓度从10 mg/L升高到80 mg/L,平衡吸附量为0.46~2.44 mg P/g粉煤灰,吸附效率从92.2%降低至61.1%;对不同浓度的含P溶液,粉煤灰最适用量为0.6~1.5 g粉煤灰/mg P;相同反应条件下,当温度由25℃升高到45℃时,P初始吸附速率提高了3倍;粉煤灰对P的吸附过程能够较好地拟合Langmuir、Freundlich及D-R吸附等温模型,相关系数均在0.98以上。通过对吸附饱和的粉煤灰进行解析实验发现,初始P浓度较低(<50 mg/L)时,以化学吸附为主,而在初始P浓度较高(>80 mg/L)时,则以物理吸附为主。  相似文献   

10.
在150 mL溶液中,稻秆用量为5 g,硝酸浓度为10%,稻秆颗粒度为20目,改性温度为80 ℃,改性时间为3 h,制备得到硝酸改性稻秆吸附剂。详细探讨了用该吸附剂处理含Pb2+废水的影响因素:吸附剂用量、Pb2+初始浓度、溶液pH值、吸附时间和吸附温度等对Pb2+吸附率的影响,并进一步通过正交实验及对比实验得出处理200 mL,初始浓度为300 mg·L-1的含Pb2+废水的最佳吸附工艺为:吸附剂用量为4 g,pH值为6,吸附时间为3 h,吸附温度为20 ℃,在此工艺条件下,对Pb2+的吸附率达到94.31%,吸附量为14.15 mg·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号