首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assessment of regional climate change impacts combined with the sensitivity of landscape functions by predictive modelling of hazardous landscape processes is a new fundamental field of research. In particular, this study investigates the effects of changing weather extremes on meso-regional-scale landscape vulnerability. Climatic-exposure parameter analysis was performed on a predicted climate change scenario. The exposure to climate change was analysed on the basis of the original data of the meso-scale IPCC A1B climate scenario from the REMO and ALADIN regional models for the periods of 2021–2050 and 2071–2100, and the regional types of climate change impacts were calculated by using cluster analysis. Selected climate exposure parameters of the REMO and ALADIN models were analysed, in particular, for extreme events (days with precipitation greater than 30 mm, heat waves, dry periods, wet periods) and for daily temperature and precipitation. The landscape functions impacted by climate change are proxies for the main recent and future problematic processes in Hungary. Soil erosion caused by water, drought, soil erosion caused by wind, mass movement and flash floods were analysed for the time periods of 1961–1990, 2021–2050 and 2071–2100. Based on the sensitivity thresholds for the impact assessments, the landscape functional sensitivity indicators were interpreted, and an integrative summary of the five indicators was made, differentiating the regions facing only a few or multiple sensitivities. In Central Hungary, the increasing exposure and sensitivity to droughts will be a serious problem when following the REMO scenario. In several regions, most indicators will change the sensitivity threshold from a tolerable risk to an increased or very high risk.  相似文献   

2.
3.
Environment, Development and Sustainability - Land use and land cover (LULC) changes, climate variability and climate change (CC) contribute hydrological response in tropical catchments, but their...  相似文献   

4.
Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.  相似文献   

5.
6.
7.
8.
Tourism is a vital sector of Cyprus economy, attracting millions of tourists every year and providing economic growth and employment for the country. The aim of this study was to investigate the impacts of projected climate change in the tourism industry in Cyprus (Republic of Cyprus) using both “Tourism Climate Index” (TCI) and “Beach Climate Index” (BCI). TCI refers to tourism activities mainly related to sightseeing, nature-based tourism, and religious tourism etc., while BCI represents beach tourism that constitutes 85 % of tourism activities in Cyprus. The projections of climate change impacts in tourism are performed for 2071–2100 period, using regional climate model output employing the A1B greenhouse gas emissions scenario. The 1961–1990 period is used as the control run to compare the respective results of the future projections. The significant warming anticipated in the distant future (increases in annual and summer temperatures close to 4 °C) will have adverse impacts on Cyprus tourism industry regarding sightseeing tourism. TCI results for the distant future period show only acceptable conditions for general tourism activities during summer in contrast with the good/very good conditions in the present climate. Conversely, this type of tourism seems to be benefited in shoulder seasons, i.e., during spring and autumn; TCI and hence tourist activities improve in the distant future in relation to the present climate. On the other hand, concerning beach tourism, future projections indicate that it will not be negatively affected by future climate change and any changes will be positive.  相似文献   

9.
10.
Regional Environmental Change - The Amazon rainforest covers roughly 40% of Colombia’s territory and has important global ecological functions. For more than 50 years, an internal war in the...  相似文献   

11.
The Senegal sole, Solea senegalensis, is a species of flatfish that has several distinct cohorts of 0-group juveniles which use estuarine nurseries in summer and winter. The early cohort is more abundant and grows faster than the late cohort that stays in the nurseries during winter; however, climate warming may have an impact on the dynamics of this species’ juveniles. This study aimed to compare mortality, metabolic response and growth of S. senegalensis juveniles at different temperatures, reflecting present-day temperature (winter—12 °C; summer—24 °C) and future temperature (plus 3 °C) conditions, in estuarine nurseries in the southern European population. Mortality was low at 12 °C, being only 10 %, increasing to 30 % at 15 °C, 40 % at 24 °C and at 27 °C it hit 70 %. Metabolic rate increased steadily with increasing temperatures, yet it increased steeply from 24 to 27 °C. Thermal sensitivity was high for the temperature interval between 24 and 27 °C. Growth was very slow at 12 °C, at a rate of 0.03 mm day?1, increasing to 0.22 mm day?1 at 15 °C, and to 0.60 mm day?1, at 24 °C. However, at 27 °C growth rapidly declined to 0.12 mm day?1. Warming will be beneficial for the late cohort, resulting in a major increase in growth. However, the early cohort will not benefit from warming, due to high mortality and arrested growth, which clearly indicates that this species is under severe thermal stress at 27 °C. Thus, here we show, for the first time, that climate change may induce contrasting seasonal impacts on fish bio-ecology and physiology, namely in species with several cohorts over the course of the year. Phenotypic and/or genotypic plasticity may limit the impacts of climate change.  相似文献   

12.
There are increasing attempts to define the measures of ‘dangerous anthropogenic inference with the climate system’ in context of Article 2 of the Framework Convention on Climate Change, due to its linkage to goals for stabilizing greenhouse gas concentrations. The criteria for identifying dangerous anthropogenic interference may be characterized in terms of the consequences of climate change. In this study, we use the water stress index (WSI) and agricultural net primary production (NPP) as indictors to assess where and when there might be dangerous effects arising from the projected climate changes for Chinese agricultural production. The results showed that based on HadCM3-based climate change scenarios, the region between the North China Plain and Northeast China Plain (34.25–47.75°N, 110.25–126.25°E) would be vulnerable to the projected climate change. The analyses on inter-annual variability showed that the agricultural water resources conditions would fluctuate through the period of 2001–2080 in the region under IPCC SRES A2 scenario, with the period of 2021–2040 as critical drought period. Agricultural NPP is projected to have a general increasing trend through the period of 2001–2080; however, it could decrease during the period of 2005–2035 in the region under the IPCC SRES A2 scenario, and during the period of 2025–2035 under IPCC SRES B2 scenario. Generally, while projected climate change could bring some potentially improved conditions for Chinese agriculture, it could also bring some critical adverse changes in water resources, which would affect the overall outcome. At this stage, while we have identified certain risks and established the general shape of the damage curve expressed as a function of global mean temperature increase, more works are needed to identify specific changes which could be dangerous for food security in China. Therefore, there is a need for the development of more integrated assessment models, which include social-economic, agricultural production and food trade modules, to help identify thresholds for impacts in further studies.  相似文献   

13.
Climate changes in the Mediterranean region, related to a significant increase in temperature and changes in precipitation patterns, can potentially affect local economies. Agriculture and tourism are undoubtedly the most important economic sources for Greece and these may be more strongly affected by changing future climate conditions. Climate change and their various negative impacts on human life are also detected in their environment; hence this study deals with implications, caused by changing climate, in urban and forest areas. Potential changes for the mid-twenty-first century (2021–2050) are analysed using a high-resolution regional climate model. This paper presents relevant climatic indices, indicative for potential implications which may jeopardise vital economic/environmental sectors of the country. The results provide insights into particular regions of the Greek territory that may undergo substantial impacts due to climate change. It is concluded that the duration of dry days is expected to increase in most of the studied agricultural regions. Winter precipitation generally decreases, whereas an increase in autumn precipitation is projected in most areas. Changing climate conditions associated with increased minimum temperatures (approximately 1.3°C) and decreased winter precipitation by 15% on average suggest that the risk for forest fires is intensified in the future. In urban areas, unpleasantly high temperatures during day and night will increase the feeling of discomfort in the citizens, while flash floods events are expected to occur more frequently. Another impact of climate change in urban regions is the increasing energy demand for cooling in summer. Finally, it was found that continental tourist areas of the Greek mainland will more often face heatwave episodes. In coastal regions, increased temperatures especially at night in combination with high levels of relative humidity can lead to conditions that are nothing less than uncomfortable for foreigners and the local population. In general, projected changes associated with temperature have a higher degree of confidence than those associated with precipitation.  相似文献   

14.
This paper uses a sensitivity framework approach to look at the probabilistic impacts of climate change on 20-year return period flood peaks, by applying a set of typical response surfaces alongside the probabilistic UK Climate Projections (UKCP09) for 10 river-basin regions over Scotland. The first paper of the pair used the same approach for 10 river-basin regions over England and Wales. This paper develops the methodology for Scotland, by first enabling better estimation of the response type of Scottish catchments. Then, as for England and Wales, the potential range of impacts is shown for different types of catchment in each river-basin region in Scotland, and regional average impact ranges are estimated. Results show clear differences in impacts between catchments of different types and between regions. The Argyll and West Highland regions show the highest impacts, while the North-East Scotland region shows the lowest impacts. The overall ranges are generally smaller for Scotland than England and Wales.  相似文献   

15.
Mainstreaming climate change adaptation (CCA) into plans and programs is still a new approach in adaptation and thus there is limited information on how to operationalize it on-ground. This paper addresses this gap by investigating the challenges in mainstreaming CCA into the local land use plans in the province of Albay, Philippines. Specifically, this paper developed 20 quantitative “mainstreaming indicators” to assess the state-of-play and the challenges for local mainstreaming. These indicators were classified under three groupings, namely, the information, institutional, and resource capacities of systems. Qualitative analysis of the indicator scores suggested that developing the institutional capacities of local governments is crucial in the local mainstreaming process. Likewise, the results highlighted the “institutional issues” indicator as the primary barrier in operationalizing the approach. These institutional issues are: fragmented laws and regulations; overlapping policy requirements; and the lack of guidelines for mainstreaming CCA into the local land use plans. Meanwhile, the “leadership” indicator, as signified by a climate change champion in Albay, was evaluated as an opportunity for local mainstreaming. The champion effectively led the CCA efforts because the existing institutional mechanisms supported the champion’s capacity to influence the behavior of people and produce collective action towards CCA.  相似文献   

16.
Mustang, a mountainous region in the Kali Gandaki River Basin in western Nepal, has been increasingly experiencing climatic changes (e.g., higher temperatures). Rising temperatures lead to ecological shifts, which, in turn, can lead to the expansion of the lower limit for the cultivation of apple trees in this area. Apple cultivation can provide opportunities for adaptations under climate change through vulnerability reduction, income source diversification, livelihood improvement, and capacity building for farmers. As there is a lack of a strong basis to justify the expansion of apple cultivation in Mustang, this study examines the biophysical and socioeconomic suitability of apple cultivation in the area. Necessary data and information were collected from both primary and secondary sources. Findings of biophysical suitability using variable and equal weights to the indicators showed that 5.2 and 4.1 % of the areas are highly suitable for apple cultivation, respectively. However, not all potential farming areas are currently in use. Thus, there is the possibility to expand apple cultivation into unplanted areas and to integrate apple crops with other crops on cultivated lands. Increasing temperature may increase the suitable areas for the cultivation of apples in the coming years. High, benefit–cost ratio for land use confirmed the economic suitability of apple farming when compared to other land uses. The social suitability assessment showed no social discords, conflicts, or disagreements with apple cultivation, which is a positive indicator for the expansion of apple cultivation in western Nepal.  相似文献   

17.
One of the targets of the United Nations ‘Millennium Development Goals’ adopted in 2000 is to cut in half the number of people who are suffering from hunger between 1990 and 2015. However, crop yield growth has slowed down in much of the world because of declining investments in agricultural research, irrigation, and rural infrastructure and increasing water scarcity. New challenges to food security are posed by accelerated climatic change. Considerable uncertainties remain as to when, where and how climate change will affect agricultural production. Even less is known about how climate change might influence other aspects that determine food security, such as accessibility of food for various societal groups and the stability of food supply. This paper presents the likely impacts of thermal and hydrological stresses as a consequence of projected climate change in the future potential agriculture productivity in South Asia based on the crop simulation studies with a view to identify critical climate thresholds for sustained food productivity in the region. The study suggests that, on an aggregate level, there might not be a significant impact of global warming on food production of South Asia in the short term (<2°C; until 2020s), provided water for irrigation is available and agricultural pests could be kept under control. The increasing frequency of droughts and floods would, however, continue to seriously disrupt food supplies on year to year basis. In long term (2050s and beyond), productivity of Kharif crops would decline due to increased climate variability and pest incidence and virulence. Production of Rabi crops is likely to be more seriously threatened in response to 2°C warming. The net cereal production in South Asia is projected to decline at least between 4 and 10% under the most conservative climate change projections (a regional warming of 3°C) by the end of this century. In terms of the reference to UNFCCC Article 2 on dangerous anthropogenic (human-induced) interference with the climate system, the critical threshold for sustained food productivity in South Asia appears to be a rise in surface air temperature of ~2°C and a marginal decline in water availability for irrigation or decrease in rainfall during the cropping season.  相似文献   

18.
Climate change is the main global challenge of this century; it is therefore imperative to identify its effects on agriculture in developing countries. This research makes spatial assessment of climate change effect on major plantation crops in Sri Lanka, with emphasis on crop suitability of tea, rubber, and coconut. Geo-referenced maps of spatial and temporal changes in crop suitability and production potentials are generated and compared. Data pertaining to six agro-ecological zones under the study area are analyzed for a period of 1980–2007. Crop suitability maps are generated amalgamating yield maps and climatic factors maps using AHP in multi-criteria analysis under two time frames of 1980–1992 and 1993–2007. Percent change in crop suitability and crop yield classes is calculated based on five crop suitability and five crop yield classes during two time frames. Dynamics of climatic parameters and crop yield are recognized using geo-referenced maps. The suitability maps of the two time frames are compared to identify the changes with each crop in conjunction with changes in the prevailing climate and yield. Geographic shift of suitability, yield, and climate classes are examined. Net gain or loss in crop production is quantified. Long-term annual rainfall significantly decreased in mid-country wet zone, whereas the mean temperature of the study area increased by 1.4°C. Results clearly showed that the climate and yield can be meaningfully related to the crop suitability and management.  相似文献   

19.

Climate change influences the agricultural sector by reducing available water resources, thereby influencing income, consumer and producer surplus, and crop prices. So, it is necessary to have a comprehensive integrated method to measure the effects of these changes on natural resources and social conditions. The present study aims to use the positive mathematical programming method to discover the trend and conditions of groundwater resources, agricultural water use, food security, and economic welfare of the agricultural sector in Iran. To this end, data for the period 2000–2015 was used under four different scenarios of normal climate change, climate change, climate variability, and concurrent climate change The results showed that the mean agricultural water use will amount to 35,103.6, 26,533.8, 35,216, and 26,510.7 million m3 and the mean decline in the reserves of aquifers will amount to 4422.22, 11,165.6, 4438.25, and 11,267.4 million m3 under the scenarios, respectively. With respect to food security, the net farm revenue will be 314,560, 248,753, 315,427, and 248,574 billion IRR, respectively. The mean crop price per ton will reach 905.3, 1141.8, 904, and 1142.8 million IRR, respectively. The mean consumer surplus will be 172,107.7, 166,450, 172,024, and 166,403 billion IRR and the mean producer surplus will be 419,959.2, 395,380, 419,751, and 395,204 billion IRR, respectively. Based on the results, to reduce the adverse impacts of climate change on different studied aspects, it is necessary to change policymaking in the water and agricultural sectors, especially regarding the shift from traditional agricultural water allocation to its market-based allocation and to change planting pattern.

  相似文献   

20.
The weight of scientific evidence suggests that human activities are noticeably influencing the world's climate. However, the effects of global climate change will be unevenly spread, due to local variations in vulnerability and adaptive capacity. Using downscaled projections of future UK climates over the next 50 years, this paper investigates the impacts of, and possible responses to, climate change in one small area in eastern England, selected as a test-bed for sustainable agriculture. It shows that local agricultural systems are vulnerable to changes in the climate. At present, however, these considerations have a limited effect on agricultural operations, which are mainly driven by short-term events and 'non-climate' policies, such as agricultural price support. The capacity of agricultural systems to adapt successfully to climate change will be determined by the ability of producers to integrate climate change into their planning strategies with a view to ultimately ensuring sustainable agricultural practices in the long term. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号