首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of soil pollution within and around the Jebel Chakir landfill, located in the Tunis City, Tunisia. The main objective was to characterize soil samples of an unlined storage basin in relation to heavy metal concentrations in the Jebel Chakir landfill to the southwest of Tunis, Northern Tunisia. Twenty-four soil samples taken from different locations around the storage basin were analyzed by atomic absorption spectrophotometry for Cr, Cu, Ni, Pb, and Zn investigation. Our results indicated high concentrations of Cr (54.4–129.9 mg/kg of DM), Zn (4.1–81.8 mg/kg of DM), Ni (15.1–43.9 mg/kg of DM), Pb (5.6–16.1 mg/kg of DM), and Cu (0.2–1.84 mg/kg of DM). These results suggested that contaminant migration is controlled by an active clay layer acting as an insulating material in the landfill. It is therefore necessary to set a treatment system for the landfill leachates and place a liner under the storage basin to reduce the pollution threat.  相似文献   

2.
Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号