首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The aim of this paper is to evaluate total and bioavailable concentration of heavy metals in agricultural soils in order to estimate their distribution, to identify the possible correlations among toxic elements and the pollution sources, to distinguish the samples in relation to sampling site or to sampling depth, and to evaluate the available fraction providing information about the risky for plants. In particular, we reinvestigated total concentrations of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, and Zn and available concentrations of As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, and Zn in soil from Apulia (Southern Italy). Analytical results showed that total concentrations, for all soils, are in the range permitted by regulations in force in Italy, but some soils evidence slight enrichment of Cd, Cr, Cu, Pb, and Zn. All the heavy metals in the available fraction were below the detection limits of the analytical techniques used except Cu, Ni, Pb, and Zn.  相似文献   

2.
Forty-two soil and apple samples from central Greece were collected and analyzed with regards to the content in major (Ca, Fe, K, Mg, Na, P, and S) and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sr, Ti, and Zn). Soil samples were analyzed by inductively coupled plasma atomic emission spectrometry, while for the apples inductively coupled plasma mass spectrometry was implemented. Several elements such as As, B, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, Ti, and Zn, represent high concentrations in apples from the study area. These relatively high concentrations may be a consequence of the local geology, along with the excessive application of agricultural products such as fertilizers and agrochemicals.  相似文献   

3.
太原市大气颗粒物中重金属的污染特征及来源解析   总被引:6,自引:2,他引:4  
为了解太原市采暖期大气颗粒物不同粒径中重金属的污染特征及其来源,于2012年10月—2013年2月对环境空气中颗粒物采样,用原子吸收分光光度法测定样品中Fe、Pb、Cu、Ni、Cr、Cd、Mn、Zn等8种元素的含量。结果表明,太原市采暖期重金属浓度从高到低依次为FePbMnZnCrCuNiCd。重金属Pb、Mn、Zn、Ni、Cd主要富集在PM2.5中;Cr主要富集在PM10中;Cu主要富集在PM5中;Fe主要在粒径大于2.5μm的粗粒子中富集。除Zn外,其他7种元素浓度均表现为灰霾期采暖期采暖前。通过主因子分析表明,太原市大气颗粒物中重金属主要来源于冶金、有机合成工业、燃煤、汽车尾气、土壤尘等。  相似文献   

4.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

5.
长江南京段近岸沉积物和土壤中重金属分布特征分析   总被引:2,自引:1,他引:1  
通过测定沉积物和土壤中Cd、Pb、Cr、Zn、Cu、Ni 6种重金属元素的平均含量,计算其富集因子,分析长江南京段近岸沉积物和土壤中重金属的空间分布特征,结果表明,几种重金属在沉积物中的富集次序为:CdPbCr1NiCuZn,在土壤中为:CdZnCu1CrPbNi,除Zn和Cu外,其他几种金属在沉积物中的富集程度高于土壤,同时Cd的含量超过土壤环境质量三级标准。以Cd和Pb为例分析了重金属含量与沉积物粒级之间的关系,回归分析显示,Cd、Pb的含量与颗粒物的粒级呈显著的相关性,与细颗粒物的含量有密切关系,细颗粒携带的重金属,在长江水力分选作用下到达下游,成为沉积物中重金属的主要来源。  相似文献   

6.
锰矿开采产生重金属污染,对周围环境造成影响,有必要对矿区重金属进行监测。研究以典型碳酸盐型锰矿——南茶锰矿(按职能划分为4个功能区:矿井区、废石区、选矿区、蓄矿区)为对象,以区域内真藓Bryum argenteum为材料,结合相关分析、聚类分析、主成分分析、变异系数等方法考察了真藓和土壤中重金属的含量及其可能的来源。结果表明:各功能区均受到不同程度的人为干扰,人为干扰越强,区域污染越严重。在不同污染梯度的功能区内,真藓的重金属(Fe、Mn、Zn、Cr、Ni、Ba、Co、Mo、Hg、Pb、Cd、Cu、Tl、As、Sb)含量与土壤重金属含量显著正相关(P<0.05),说明真藓是监测碳酸盐型锰矿重金属污染的有效指标。真藓指示南茶锰矿除了可能受到采矿活动的强烈影响外(Mn、Cu、Fe、Zn、Cr、Ni、Mo、Ba),还受到来自运输车辆的机械磨损、排放及采矿活动的复合污染(Tl、Cd、Pb、As、Sb),识别结果与区域重金属分布情况吻合,表明真藓具有识别重金属污染的能力。在今后碳酸盐型锰矿污染防治工作中,可将真藓作为重金属污染监测的生物材料。  相似文献   

7.
Heavy Metal Pollution of Surface Soil in the Thrace Region, Turkey   总被引:1,自引:0,他引:1  
Abstact Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 35 elements in the soil samples. Concentrations of As, Cd, Co, Cu, Mn, Ni, Pb and Zn were determined using AAS and GF AAS, and ENAA was used for the remaining 27 elements. Results for As, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V and Zn are reported for the first time for soils from this region. The results show that concentrations of most elements were little affected by the industrial and other anthropogenic activities performed in region. Except for distinctly higher levels of Pb, Cu, Cd and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of As, Cd, Cr, Cu, Ni, Pb and Zn were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology  相似文献   

8.
Guideline values are used to identify polluted or contaminated areas based on background values. Brazilian law establishes three guideline values for pollutants: a quality reference value (QRV), a prevention value, and an intervention value. Reference values refer to the natural concentration of an element or a substance in soils that have not been modified by anthropogenic impacts. These values inform assessments of soil quality and are used to establish maximum permissible limits. The objective of this study was to determine the natural levels and reference values for Cd, Co, Cr, Cu, Ni, Pb, and Zn in samples from the surface layer (0–20 cm) of 19 representative soils of the states of Mato Grosso and Rondônia, on Brazil’s agricultural frontier. Pseudo-total metal concentrations were obtained following microwave-assisted digestion using the aqua regia and EPA3051 methods. QRVs were calculated for each element as the 75th and 90th percentiles of the frequency distribution of the data. Natural levels of heavy metals in the soil samples followed the order: Cr?>?Zn?>?Cu?>?Co?>?Pb?>?Ni?>?and Cd (aqua regia) and Cr?>?Co?>?Cu?>?Pb?>?Zn?>?Ni?>?Cd (EPA3051). These values are generally lower than those reported in the Brazilian and international literature, which highlights the importance of establishing reference values for each state or for each soil type, taking into account the geomorphological, pedological, and geological diversity of the region under study.  相似文献   

9.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

10.
Concentration of Cd, Co, Cr, Ni, Zn, Fe, Mn, Pb and Cu were determinedin biota and sediment samples collected from the Marmara Sea in Turkey. The levels of Zn, Fe, Mn, Pb and Cu in the macroalgae are higher than previous studies in the Marmara Sea. Moreover, Cu and Zn concentrations at the present study are significantly high than Bosphorus and Black Sea algae. The order heavy metal concentrations in the mussel samples was: Fe > Zn > Ni > Mn > Cu > Pb > Cr > Cd > Co. The metal concentrations are generally lower when compared with the Black Sea mussels except Pb. At the same time, concentrations of Pb, Cu and Zn in the mussel species are lower when compared with the results in the Aegean Sea. The ranges of Mn and Cu in the tested fish samples are higher than Black Sea fish. On the other hand, Cd, Co, Cr, Zn and Pb concentrations are lower. The northern coast of the Marmara Sea having the highest metal concentrations in sediments as follows: Co, Cr, Ni, Fe at ?arköy ; Pb, Cu at M. Ere?li; Cd, Zn, Mn at Menek?e. The heavy metal levels in the sediment samples are lower than other areas in the Marmara Sea.  相似文献   

11.
The distribution and accumulation of heavy metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Ba, Pb) in the water, sediments, plankton of Yeniça?a Lake, and its potential sources (creeks, sewage, artesian well, soil) were investigated during 1-year study period as monthly or seasonally. Element analyses were performed by ICP–MS. Results showed that the trace and toxic elements (Al, As, Mn, Pb, Fe) concentration in lake water and/or its feeding sources were above the recommended water standards (WHO, EC, EPA, TS-266). It was found that the maximum accumulation of the heavy metals iron, aluminum, manganese, zinc, and barium in the sediment of Yeniça?a Lake. The accumulation order of trace metals were Fe > Al > Mn > Zn > Ba > Ni > Cr > As > Cu > Pb > Co > Mo > Sn > Cd in the lake, creeks sediment, and soil samples. The similar results suggest that the accumulation of heavy metals in the sediment is a natural process. Metals accumulated in the lake are naturally mixed from the soil. However, the presence of heavy metals in the analysis of artesian well water and sewage reveals that the transportation occurs also from the groundwater to the lake. The results obtained in plankton in Yeniça?a Lake showed that aluminum, iron, manganese, zinc, and barium were most accumulated elements in the plankton. The lower averages of lead prevalent in the water and sediment during some months were seen to have a significant mean accumulation in the plankton.  相似文献   

12.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

13.
Toxic metals accumulated in the human body are predominantly absorbed by the digestive tract in non-occupationally exposed populations. In the current study, we collected plowed soil samples, and investigated the varied food compositions in a mining and smelting area in southwestern China, to measure the concentrations of ten potentially toxic metals—As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sr, and Zn. We collected information on the daily intakes of these metals to assess the health risks associated with their exposure among children and adults. The urine concentrations of the metals were also measured to obtain data on the amounts present in the body. The results showed that the hazard indexes (HIs) of As, Ba, Cd, Cr, Ni, Pb, and Sr were all larger than 1, for both adults and children; the Zn and Cu values were comparatively higher in children. The intake of staple foods of the region posed the greatest health risk, while drinking water only posed risks clearly associated with As exposure. The urine samples of local residents contained larger amounts of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn, confirming the hazards in the health risk assessment. Obvious differences in the urine metal concentrations between men and women were confirmed. In conclusion, higher concentrations of metals in the surface soil and rain water were the predominant cause of elevated exposure through home-grown crops and produce to accumulate in local residents’ bodies.  相似文献   

14.
Metal contents (Al, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Ti, and Zn) have been measured in 30 surface soils on Fildes Peninsula, King George Island, Antarctica, yielding values (in milligrams kilogram(-1)) of 41.57-80.65 (Zn), 2.76-60.52 (Pb), 0.04-0.34 (Cd), 7.18-25.03 (Ni), 43,255-70,534 (Fe), 449-1,401 (Mn), 17.10-64.90 (Cr), 1,440-25,684 (Mg), 10,941-49,354 (Ca), 51.10-176.50 (Cu), 4,388-12,707 (Ti), 28,038-83,849 (Al), and for Hg (in nanograms gram(-1)) 0.01-0.06. Relative cumulative frequency analysis was used to determine the baseline values for the 13 metals. Compared with adjacent areas in Antarctica, Mg and Ni are significantly lower, but Cu is significantly higher than that of McMurdo Station. Enrichment factor analysis and the geo-accumulation index method were applied in order to determine the extent of anthropogenic contamination, and both show that Pb, Cd, and Hg have been significantly increased by human activities. Principal component analysis was used to identify the sources of metals in these soil samples.  相似文献   

15.
Over the last several decades, there has been increased attention on the heavy metal contamination associated with highways because of the associated health hazards and risks. Here, the results are reported of an analysis of the content of metals in roadside dust samples of selected major highways in the Greater Toronto Area of Ontario, Canada. The metals analysed are lead (Pb), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr), copper (Cu), manganese (Mn), calcium (Ca), potassium (K), magnesium (Mg) and iron (Fe). In the samples collected, the recorded mean concentrations (in parts per million) are as follows: Cd (0.51), Cu (162), Fe (40,052), Cr (197.9), K (9647.6), Mg (577.4), Ca (102,349), Zn (200.3), Mn (1202.2), Pb (182.8) and Ni (58.8). The mean concentrations for the analysed samples in the study area are almost all higher than the average natural background values for the corresponding metals. The geo-accumulation index of these metals in the roadside dust under study indicates that they are not contaminated with Cr, Mn and Ca; moderately contaminate with Cd and K; strongly contaminated with Fe and Mg; strongly to extremely contaminated with Ni and Pb; and extremely contaminated with Cu and Zn. The pollution load index (PLI) is used to relate pollution to highway conditions, and the results show that PLI values are slightly low at different samples collected from Highways 401 and 404 and high in many samples collected from Highway 400 and the Don Valley Parkway. Highway 400 exhibits the highest PLI values.  相似文献   

16.
Chemical fractionation of heavy metals in urban soils of Guangzhou, China   总被引:5,自引:0,他引:5  
Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominately located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron–Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.  相似文献   

17.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

18.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

19.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

20.
The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration—due to the drilling activity—without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号