首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zooplankton abundance, biomass, and composition from the ports of Mumbai, India, were studied by selecting 14 stations in and around the area during three different periods between 2001 and 2002 (Nov 01, Apr 02, and Oct 02). The results are compared with the records available since the 1940s. Copepod species such as Canthocalanus sp., Paracalanus arabiensis, Cosmocalanus sp., Euterpina acutifrons, Nannocalanus minor, and Tortanus sp. which were not reported in the earlier studies were observed during the present investigation. Purely herbivorous forms like Nannocalanus minor, Paracalanus sp., and Temora discaudata were in reduced abundance during Apr 02 sampling which was coupled with reduction in the diatom population. Whereas increased abundance of some carnivorous and omnivorous forms during Apr 02 sampling can be related to the changes in the food web dynamics.  相似文献   

2.
Street dust was collected from five roads with different traffic volumes in the metropolitan area of Beijing and separated into five size fractions. Concentrations of polycyclic aromatic hydrocarbons (PAHs) adsorbed on street dust in different size ranges and their correlation with specific surface area and total organic carbon (TOC) were investigated. Results show that the concentration of 16-PAHs of sieved samples ranges from 0.27 to 1.30 mg/kg for all the sampling sites. Particles smaller than 40 μm in diameter have the highest 16-PAHs concentration among all of the size ranges for street dust from the four sampling sites with vehicles running on. PAHs with three or four rings account for 68% of the overall 16-PAHs on average. Remarkable positive correlation exists between 16-PAHs concentration and specific surface area with R 2 values from 0.7 to 0.96 for the four sampling sites with vehicles running on. The relationship between the concentration of 16-PAHs and TOC is less clear.  相似文献   

3.
Hydrochemical investigations of the groundwater and the seasonal effect on the chemical budget of ions along the course of the polluted river Adyar were carried out. From the geochemical results, it has been found that the seasonal effect does not change the order of abundance of both cations and anions, but it does change the concentration of various ions present in the groundwater. Among the chemical budget of ions, sodium and chloride were found to be the most predominant ions. The nitrate concentration in the groundwater ranges from 4.21 to 45.93 mg/l in pre-monsoon and in post-monsoon it ranges from 1.02 to 75.91 mg/l. The nitrate concentrations in the post-monsoon are high in some places especially in the upper stretch of the river. The intense agricultural activities near the upper stretch of the river may be an important factor for the higher concentration of nitrates in these aquifers. In order to determine the geochemical nature of water, the data was interpreted using the piper diagram wherein the results show the predominance of NaCl and CaMgCl types. Equiline diagrams, 1:1, were applied to evaluate the affinity ion relationship between various ions present in these waters. The quality of the groundwater was assessed with regard to its suitability to drinking and irrigation. A comparison of the groundwater quality in relation to drinking water quality standards shows that most of the water samples are not suitable for drinking, especially in post-monsoon period. US Salinity Laboratory's, Wilcox's diagrams, Kellys ratio and magnesium ratio were used for evaluating the water quality for irrigation which suggest that the majority of the groundwater samples are not good for irrigation in post-monsoon compared to that in pre-monsoon. Moreover the source of the ions in the water was examined and classified accordingly using Gibb's diagram. The analytical results reveals that the TDS values of the pre-monsoon samples were found to be lower than the post-monsoon reflecting that leaching predominates over that of the dilution factor.  相似文献   

4.
Morgan Island, located within the ACE Basin National Estuarine Research Reserve in South Carolina, is home to the only free-ranging colony of rhesus monkeys (Macca mulatta) in the continental United States. The purpose of this study was to assess environmental impacts of the monkey colony on water quality in adjacent tidal creeks and on island vegetation. Three tidal creeks were sampled: Morgan Creek, adjacent to the monkey colony; Back Creek, on Morgan Island not adjacent to the colony; and Rock Creek, on a nearby island unoccupied by monkeys. Temperature, salinity, pH, dissolved oxygen, nutrients and fecal coliform bacteria were measured six times at three sites in each of these creeks, and vegetation change analysis was conducted in a geographic information system using satellite imagery. Results showed elevated fecal coliform concentrations in the Morgan Creek site immediately adjacent to the colony, though no samples exceeded the standard set for recreational water use. Ribotyping reconnaissance matched four Escherichia coli isolates from Morgan and Back Creeks to the monkeys, identifying the colony as one source of fecal coliform bacteria, though relative source loadings could not be quantified. Significant differences were not observed between ammonia or orthophosphate levels in Morgan Creek relative to the other creeks tested; and vegetation change analysis showed a 35% increase in canopy cover between 1979 and 1999. Overall, these results suggest that the rhesus colony’s environmental impacts are localized and minimal. Results from this study provide baseline data on Morgan Island and may be useful in management decisions regarding the future of the monkey colony.  相似文献   

5.
The present investigation deals with the limnobiotic status of Almatti reservoir from February, 2003 to January, 2005. The study revealed that, the distribution and population density of zooplankton species depend upon the physico-chemical factors of the environment. Statistical analysis showed that there exists a significant relation between the biological and non-biological factors. The benthic fauna constituting the food of fish can be utilized for extensive culture operation so that the nutrients in the reservoir are not only properly cycled but also serve as a check on further eutrophication.  相似文献   

6.
Tawa River is the biggest left bank tributary of the Narmada, the largest west-flowing river of the Indian peninsula. Central India enjoys a tropical climate, is highly urbanized, and the river flow is mostly controlled by monsoon; a large part of the population depend on rivers for their livelihood. Spatial and temporal variations in the hydrochemistry of the Tawa River were studied based on seasonal sampling along the course of the river and its tributaries. The study is important because not much data exist on small size rivers and the river processes spell out correctly in smaller basins. The monsoon season accounts for more than 70 % of river water flow. The basin is characterized by silicate lithology; however, water chemistry is controlled by carbonate-rich soils and other weathering products of the silicate rocks, as indicated by the high (Ca?+?Mg)/(Na?+?K) ratios (>3.8). The values of the Na-normalized ratios of Ca2+, Mg2+, and HCO3 ? suggest that both the carbonate and silicate lithology contribute to the hydrochemistry. On average, 42 % of HCO3 ? in the Tawa River water is contributed by silicate weathering and 58 % from carbonate lithology. The water remains undersaturated with respect to calcite during the monsoon and post-monsoon seasons and supersaturated during the pre-monsoon season. A significant influence of mining in the basin and other industrial units is observed in water chemical composition.  相似文献   

7.
8.
The study explains water quality of three important tributaries of the Ganga River in the middle Gangetic plains in India. Seasonal changes in the water quality of the studied rivers: Gandak, Ghaghra, and Sone were observed. During monsoon, several water quality parameters show considerable changes due to increased runoff from the catchments and other seasonal factors. Multivariate discriminant analysis delineated a few parameters responsible for temporal variation in water quality. Seasonal variation in water quality of the Gandak River was rendered by seven parameters??turbidity, sulfate, pH, phosphate, water temperature, total alkalinity, and sodium, while total alkalinity and water temperature were responsible for seasonal discrimination in water quality of Ghaghra River. Water temperature, turbidity, total dissolved solids, total suspended solids, calcium, and phosphate were important for seasonal discrimination in water quality of Sone River. The seasonal changes in water quality of the rivers were due to seasonal effects and catchment characteristics. The discriminant functions classified most of the cases correctly.  相似文献   

9.
The seasonal variations of the chemical budget of ions were determined from the hydrochemical investigation of the groundwater. Though the effect of monsoon does not change the order of abundance of cations, but it does change the concentration of various ions and it is found that there was a considerable change in the case of all major ions. The unique characteristic of the ground water is the linear relationship among the principal ions. Hydrochemical characteristics of ions in the groundwater were studied using 1:1 equiline diagrams. The nature of the water samples were determined using the piper diagram. The correlation studies and R-mode factor analysis were carried out on the various groundwater parameters. The study of factor scores reveals the extent of influence of each factors on the overall water chemistry at each sampling stations. The trace metal concentration in the water was determined. The quality of the groundwater in the study area has been assessed using Percent sodium, SAR and Wilcox diagrams. The groundwater results of the premonsoon shows the dominance of excessive evaporation, silicate weathering and anthropogenic activities whereas in postmonsoon, dilution predominates over that of other factors.  相似文献   

10.
The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter ≤10 μm (PM10), SO2, and NO2] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM10, SO2, and NO2 increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM10, NO2, and SO2 concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM10 in all the years from 2002 to 2007 and for NO2 in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM10 in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM10, SO2, and NO2.  相似文献   

11.
A Burkard personal volumetric sampler was used at Sriniketan, a town about 150 km northwest of Calcutta, in the state of West Bengal, in eastern India to record the frequency of three common airborne Cassia pollen types, Cassia tora, Cassia occidentalis, and Cassia fistula for two consecutive years (2004–2006). Correlation was made between the meteorological factors and the pollen concentration in the atmosphere. The study reports Cassia pollinosis by in vivo skin prick test in respiratory allergic patients. The highest positive reactions were exhibited by C. tora (34.7 %), C. fistula (33.3 %), and C. occidentalis (28.5 %). The allergic potential of these was investigated by in vitro enzyme linked immunosorbent assay test. Their protein components were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, in the range of 15.8–81.5 kDa. In C. occidentalis and C. fistula, 11 bands were found, while it was 10 in C. tora. The results show that the Cassia pollen occur significantly in the atmosphere with the potential to elicit an allergic response in susceptible patients.  相似文献   

12.
The temporal variation in the Specific Growth Rate (SGR) of natural population of heterotrophic bacterioplankton of the river Cauvery and its four down stream tributaries in Karnataka State was monitored over a period of two years from February 2000 to January 2002. The SGR was calculated by taking into account only the abundance of bacterioplankton at the beginning (0 h) and at the end (48 h) incubation period, at room or river temperature. The mean SGR was less and significantly different in the surface waters of river Kapila, Shimsha, Suvarnavathy and Arkavathy. But it was more and significantly different in river Cauvery when compared to other tributaries. This suggests that the river Cauvery was more favorable habitat for SGR of bacterioplankton than the other four watercourses studied. Investigation of interrelationship between SGR and other bacterial variables showed presence of only one correlation with direct counts of particle bound bacteria in river Arkavathy. Further, the relationship between SGR of bacterioplankton and other environmental variables showed the presence of six correlations in river Shimsha, five in river Suvarnavathy, three in river Cauvery, and two each in river Kapila and river Arkavathy. Negative SGR were recorded on thirteen occasions in river Cauvery followed by eleven in river Shimsha, nine in river Suvarnavathy, seven in river Arkavathy and five in river Kapila, out of fifty SGR determinations. This negative SGR were a result of decrease in the observed bacterial cell counts after 48 h incubation from that of 0 h count. The probable reason for such negative growth rate and dependency of SGR of bacterioplankton and environmental variables has been discussed.  相似文献   

13.
Seasonal observations on water-quality parameters and chlorophyll-a in the coastal waters off Kalpakkam, southeast coast of India, was carried out covering an area of about 30 km(2) to find out the variations in physicochemical properties during a monsoonal cycle of the year. Most of the parameters exhibited a significant spatial and seasonal variation. It revealed that the coastal water was significantly influenced by freshwater input from the nearby backwaters during North-east monsoon and post-monsoon periods. A marginal increase in pH from coast towards offshore was noticed during the observation. Relatively low salinity values were observed during pre and post monsoon when compared to summer. Bottom water was found to be highly turbid during summer and pre-monsoon conditions when compared to surface. This could be attributed to the strong northerly wind and northward current prior to the onset of southwest monsoon. N, P and Si based nutrients are relatively high in their concentration in the bottom water. Nitrate was significantly high during post-monsoon and contributed greatly towards total nitrogen as evident from the statistical correlation. Ammonia concentration was relatively high in the bottom samples during all the seasons except on a few occasions during post-monsoon. In general, phosphate and total phosphorous values remained low and particularly so in the surface water. Higher silicate concentration was observed in the bottom water, and there was a reducing trend towards offshore. High chlorophyll-a values were observed during summer and surface water was found to have higher pigment concentrations as compared to the bottom. Results show that phosphate acts as the limiting factor for phytoplankton production particularly during post-monsoon period whereas; none of the nutrients were found to be limiting the phytoplankton growth during other seasons.  相似文献   

14.
Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L?1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.  相似文献   

15.
A study pertaining to the seasonal variation in physicochemical properties of the coastal waters was carried out at Kalpakkam coast for a period of 1 year (February 2006 to January 2007). It revealed that the coastal water was significantly influenced by freshwater input during North East (NE) monsoon and post-monsoon periods. Concentration of all the nutrients and dissolved oxygen (DO) was relatively high during the NE monsoon, whereas, salinity and chlorophyll-a (chl-a) were at their minimum level during this period. Phytoplankton production peak was observed in summer during which a typical marine condition prevailed. The present observed values of nitrate, phosphate, silicate, and turbidity are significantly high (five to ten times) compared to that of the pre-Tsunami period from this coast. Relatively low DO and chl-a concentration was noticed during the post-Tsunami period. A notable feature of this study is that though nutrient concentration in the coastal waters during post-Tsunami period has increased significantly, turbidity, the most single dominating factor, was found to adversely affect the phytoplankton production during post-Tsunami period as reflected by relatively low chl-a concentration. Thus, the post-Tsunami period may result in a change in coastal biodiversity pattern concomitant with change in coastal water quality.  相似文献   

16.
Marine sediments of the Gulf of Mannar (GoM), India are contaminated by potential toxic elements (PTEs) due to anthropogenic activities posing a risk to the existing fragile coral ecosystem and human health. The current study aimed to assess the distribution of PTEs (arsenic—As; cobalt—Co; copper—Cu, molybdenum—Mo; lead—Pb; and zinc—Zn) in marine sediments of different grain size fractions, viz., medium sand (710 μm), fine sand (250 μm), and clay (<63 μm) among the different coastal regions of Pamban, Palk Bay, and Rameswaram coasts of GoM, using grain size as one of the key factor controlling their concentrations. The concentrations of PTEs were measured in the different size fractions of sediment using inductively coupled plasma mass spectrophotometer. The order of accumulation of all PTEs in the three fractions was ranked as Zn > Cu > Pb > As > Co > Mo and in the three locations as Rameswaram > Palk Bay > Pamban. The concentration of PTEs in Palk Bay and Rameswaram coast was significantly different (P?<?0.05), when compared to Pamban coast. Measured geoaccumulation index (I geo) and contamination factor (CF) indicated significant enrichment of Co and Pb from Rameswaram coast when compared to other two coasts. Although the concentration of Co was low but the measured I geo and CF values indicated significant enrichment of this PTE in Rameswaram coast. The increased input of PTEs in the coastal regions of GoM signifies the need to monitor the coast regularly using suitable monitoring tools such as sediments to prevent further damage to the marine ecosystem.  相似文献   

17.
The Danshui River estuarine system is the largest estuarine system in northern Taiwan and is formed by the confluence of Tahan Stream, Hsintien Stream, and Keelung River. A comprehensive one-dimensional (1-D) model was used to model the hydrodynamics and cohesive sediment transport in this branched river estuarine system. The applied unsteady model uses advection/dispersion equation to model the cohesive sediment transport. The erosion and deposition processes are modeled as source/sink terms. The equations are solved numerically using an implicit finite difference scheme. Water surface elevation and longitudinal velocity time series were used to calibrate and verify the hydrodynamics of the system. To calibrate and verify the mixing process, the salinity time series was used and the dispersion coefficient of the advection/dispersion equation was determined. The cohesive sediment module was calibrated by comparing the simulated and field measured sediment concentration data and the erosion coefficient of the system was determined. A minimum mean absolute error of 4.22 mg/L was obtained and the snapshots of model results and field measurements showed a reasonable agreement. Our modeling showed that a 1-D model is capable of simulating the hydrodynamics and sediment processes in this estuary and the sediment concentration has a local maximum at the limit of salinity intrusion. Furthermore, it was indicated that for Q 50 (the flow which is equaled or exceeded 50% times), the turbidity maximum location during neap tide is about 1 km closer to the mouth compared to that during spring tide. It was found that deposition is the dominant sediment transport process in the river during spring–neap periods. It was shown that, while sediment concentration at the upstream depends on the river discharge, the concentration in the downstream is not a function of river discharge.  相似文献   

18.
Island Lake, Saskatchewan, has become eutrophic, subsaline (salinity between 0.5 and 3.0 g I–1) and contaminated with several metals over the last decade. In this study, the crustacean zooplankton community in the lake in early summer 1989 is compared to the community during the early summers of the baseline years 1978 and 1979, based on archived environmental impact assessment samples. Community composition has changed, probably because of salinization and perhaps, to a lesser extent, eutrophication. Calanoid copepods have disappeared, while the numbers of species of cyclopoid copepods and cladocerans have increased. Ceriodaphnia reticulata, present in 1988 only, was more numerous than any other species during all three years. Densities of all other species were very low in 1989, which has led to lower diversity (Simpsons Index). Predation by Chaoborus probably contributed to the low abundances in 1989. The characteristics of the zooplankton community in 1989 were very similar to those of zooplankton in culturally acidified lakes, and indicate that Island Lake is in poor health. The success of Ceriodaphnia, a standard toxicity bioassay genus, is noteworthy under such contaminated conditions. While the taxonomic changes are obvious, the zooplankton data are limited; therefore causes can only be inferred. The study demonstrates the need for more and better ecosystem-specific biological information in order to do environmental impact assessments, in this case for mining in the north.  相似文献   

19.
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.  相似文献   

20.
Oritani Marsh in the Hackensack Meadowlands of urbanized northeastern New Jersey USA was assessed in 2000 for vegetation, soil/sediment chemistry, abundance/diversity of benthic invertebrates, and bird and mammal usage. Vegetatively, both marsh and uplands are dominated by tall, dense Phragmites australis. Small patches (less than 2 hectares total) dominated by Spartina spp. were found at the lowest elevations. Soil/sediment cores were sliced into 5 intervals and analyzed for metals, pesticides and volatile/semivolatile organic compounds. Thirteen locations had at least one chemical above Long et al.’s [Environmental Management, 19, 1995, 81--97] “Effects Range-Median” (ERM). Seven metals and nine organics exceeded ERM in at least one sample, with mercury showing the most exceedances. The surface 15 cm interval was generally more contaminated with metals than the 15 to 30 cm interval; the reverse was true for semivolatile organic compounds. Twenty taxa of benthic macroinvertebrates were collected, with each location producing from 1 to 9 taxa. Abundance ranged from 11 to 3,889 individuals/m2. Number of taxa was moderately (r 2 between 0.40 and 0.70) negatively correlated with zinc, beryllium, nickel and arsenic concentrations; no other chemical’s r 2 was above 0.25. Diversity was moderately negatively correlated with arsenic and beryllium. These correlations were unexpected: zinc, beryllium, nickel and arsenic were not the chemicals found at the highest concentrations relative to benchmarks. Number of taxa, abundance and diversity were moderately (negatively) correlated with elevation; organic carbon was moderately (positively) correlated with abundance. All other correlations were weak (r 2 < 0.35). Live traps captured only one mammal species, the meadow jumping mouse. Bird observations revealed 39 species, dominated by a few common species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号