首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dynamic model for assessing the transfer of several radionuclides ((58)Co, (60)Co, (110 m)Ag, (134)Cs, (137)Cs, (54)Mn and (131)I) in a food-chain was applied on the Loire river, where 14 nuclear power plants situated on five different sites operate. The model considers the following potential exposure pathways: (i) transfer of radionuclides through the aquatic food chain and the subsequent internal exposure of humans due to ingestion of contaminated water and/or fish; (ii) use of river water for agricultural purposes (irrigation), transfer of radionuclides through the terrestrial food chain and the subsequent internal exposure of humans due to ingestion of contaminated foodstuffs; (iii) internal exposure due to inhalation of dust originating from resuspension of contaminated soil particles; (iv) external exposure from radionuclides present in the river or deposited on the river sediments or the soil. For each of the parameters introduced in this model, a probability density function, allowing further uncertainty and sensitivity analysis, was proposed. Uncertainty/sensitivity analysis were performed to: (i) compare calculations to empirical data; (ii) determine a confidence interval for the mean annual dose to critical groups; and (iii) identify the parameters responsible for the uncertainty and subsequent research priorities.  相似文献   

2.
A dynamic model for assessing the transfer of tritium in a food chain was applied to the Loire River, where 14 nuclear power plants situated on five different sites operate. The model considers several potential exposure pathways in the aquatic and terrestrial ecosystems: transfer of tritium through the aquatic food chain (especially fish); use of river water for agricultural purposes (irrigation) and transfer of radionuclides through the terrestrial food chain (vegetables, meat, milk); subsequent internal exposure of humans due to ingestion of contaminated foodstuffs. For biological environmental compartments, the transfer of tritium to organic matter (i.e. OBT) was simulated. For each of the parameters introduced in this model, a probability density function, allowing further uncertainty and sensitivity analyses, was proposed. Uncertainty/sensitivity analyses were performed to determine a confidence interval for the mean annual dose to critical groups and to identify the parameters responsible for the uncertainty and subsequent research priorities.  相似文献   

3.
The available literature on the transfer of radionuclides from soil to fruit has been reviewed with the aim of identifying the main variables and processes affecting the behaviour of radionuclides in fruit plants. Where available, data for transfer of radionuclides from soil to other components of fruit plant have also been collected, to help in understanding the processes of translocation and storage in perennial plants. Soil-to-fruit transfer factors were derived from agricultural ecosystems, both from temperate and subtropical or tropical zones. Aggregated transfer factors have also been collected from natural or semi-natural ecosystems. The data concern numerous fruits and various radionuclides. Soil-to-fruit transfer is nuclide specific. The variability for a given radionuclide is first of all ascribable to the different properties of soils. Fruit plant species are very heterogeneous, varying from woody trees and shrubs to herbaceous plants. In temperate areas the soil-to-fruit transfer is higher in woody trees for caesium and in shrubs for strontium. Significant differences between the values obtained in temperate and subtropical and tropical regions do not necessarily imply that they are ascribable to climate. Transfer factors for caesium are higher in subtropical and tropical fruits, while those for strontium, as well as for plutonium and americium, in the same fruits, are lower; these results can be interpreted taking into account different soil characteristics.  相似文献   

4.
The present paper summarises the results of the review and assessment of state-of-the-art models developed for predicting the migration of radionuclides through rivers. The different approaches of the models to predict the behaviour of radionuclides in lotic ecosystems are presented and compared. The models were classified and evaluated according to their main methodological approaches. The results of an exercise of model application to specific contamination scenarios aimed at assessing and comparing the model performances were described. A critical evaluation and analysis of the uncertainty of the models was carried out. The main factors influencing the inherent uncertainty of the models, such as the incompleteness of the actual knowledge and the intrinsic environmental and biological variability of the processes controlling the behaviour of radionuclides in rivers, are analysed.  相似文献   

5.
The long-lived anthropogenic radionuclides (237)Np, (239)Pu and (240)Pu were determined in marine environmental samples (seaweed and seawater) collected from Swedish-Danish waters and the North Atlantic Ocean at various locations on different occasions during the period 1991-2001. The measurements were performed with sector field Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and conventional alpha spectrometry. The (237)Np activity concentrations in Fucus vesiculosus and surface seawater from the Swedish west coast and Danish waters ranged from 0.16+/-0.02 to 1.02+/-0.09 mBq kg(-1) (dry weight) and 0.65+/-0.02 to 1.69+/-0.02 mBq m(-3), respectively, depending on the location and sampling year. Most of the (237)Np in these waters is believed to originate from the Sellafield nuclear reprocessing plant, with some contribution from global fallout. The (240)Pu/(239)Pu atomic ratios in F. vesiculosus samples are reported in this study with an overall average of 0.17+/-0.03. The (237)Np and (239)Pu activity concentrations observed in surface seawater collected in North Atlantic waters ranged from 0.16+/-0.01 to 0.62+/-0.08 mBq m(-3) and from 0.64+/-0.05 to 4.27+/-0.08 mBq m(-3), respectively, and the (237)Np/(239)Pu atomic ratios were a good indicator of conservative behaviour of Np in marine waters.  相似文献   

6.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

7.
Environmental monitoring primarily aims through sampling or by the use of direct detection equipment to quantify the levels of radioactive substances and ionising radiation resulting from human activities and natural sources in the different compartments of the environment. Its objectives are very practical and include the quantification of the environmental sources of ionising radiation and the verification of compliance with regulatory requirements and permit limits for industrial, research and medical activities, as stated by their specific licence. Radioecology is a multidisciplinary science, which attempts to understand and to quantify the behaviour of radionuclides in the environment and the processes ruling their transport through natural and agricultural ecosystems to various receptors such as plants, animals and humans. A second facet of this science covers the assessment of the radiological dose to and effects on man and its environment from present, past or future, even hypothetical, nuclear activities. Despite their different immediate objectives, environmental monitoring and radioecology are complementary. Many examples illustrate the connections between these two approaches. For instance, transfer parameters generated by radioecological studies are necessary to estimate through models the radiological exposure of population, derive from the contamination level measured in a bio-indicator the quantity of radioactivity released from a nuclear installation, or identify potentially important pathways to be monitored. On the other hand, monitoring data will confirm important pathways suggested by radioecological modelling and provide site-specific data for the estimation of model parameters or actual data sets for the validation of transfer models.  相似文献   

8.
Sources of anthropogenic radionuclides in the environment: a review   总被引:1,自引:0,他引:1  
Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides 99Tc and 129I, as well as geochemical behavior for radionuclides 99Tc, 129I, and 237Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides.  相似文献   

9.
Rock phosphate ore processing and disposal of phosphogypsum contribute to enhanced levels of natural radionuclides in the environment. Studies on the distribution of U-series nuclides were carried out in the Chitrapuzha River, near Cochin, in the southern part of India. The concentrations of radionuclides, especially 226Ra, in the river waters showed enhancement by an order of magnitude relative to the levels in nearby water bodies. The concentrations were influenced by seasonal changes in the river flows during monsoon and summer periods. Ingestion doses via fish and milk have an upper estimate of 18 microSv for the critical population.  相似文献   

10.
A variety of models for predicting the behaviour of radionuclides in fresh water ecosystems have been developed and tested during recent decades within the framework of many international research projects. These models have been implemented in Computerised Decision Support Systems (CDSS) for assisting the appropriate management of fresh water bodies contaminated by radionuclides. The assessment of the state-of-the-art and the consolidation of these CDSSs has been envisaged, by the scientific community, as a primary necessity for the rationalisation of the sector. The classification of the approaches of the various models, the determination of their essential features, the identification of similarities and differences among them and the definition of their application domains are all essential for the harmonisation of the existing CDSSs and for the possible development and improvement of reference models that can be widely applied in different environmental conditions. The present paper summarises the results of the assessment and evaluation of models for predicting the behaviour of radionuclides in lacustrine ecosystems. Such models were developed and tested within major projects financed by the European Commission during its 4th Framework Programme (1994-1998). The work done during the recent decades by many modellers at an international level has produced some consolidated results that are widely accepted by most experts. Nevertheless, some new results have arisen from recent studies and certain model improvements are still necessary.  相似文献   

11.
12.
The area of the town of Mailuu Suu, Kyrgyzstan, is polluted by radionuclides and heavy metals from tailing dumps and heaps resulting from the historic exploitation of uranium mines. In the frame of a European Commission-TACIS funded project, radiological assessment was performed for critical group members living in the city of Mailuu Suu, located downstream the tailings, or in the village of Kara Agach, partially located on a uranium mine waste dump. The actual external exposure is around 1.2 mSv a(-1) at both locations and exposure from radon is around 3 mSv a(-1) at Mailuu Suu and around 10 mSv a(-1) at Kara Agach. Ingestion dose was negligible for a critical group member living at Mailuu Suu. At Kara Agach, however, under the hypothesis that all food and fodder is cultivated locally, exposure from ingestion is much higher ( approximately 10-30 mSv a(-1)). In case of an accidental scenario [(part of) Tailing 3 content thrust to river], estimated additional maximum doses result in 45 and 77 mSv for an adult and a child, respectively.  相似文献   

13.
Assessment of the environmental and radiological consequences of a nuclear accident requires the management of a great deal of data and information as well as the use of predictive models. Computerised Decision Support Systems (CDSS) are essential tools for this kind of complex assessment and for assisting experts with a rational decision process. The present work focuses on the assessment of the main features of selected state-of-the-art CDSS for off-site management of freshwater ecosystems contaminated by radionuclides. This study involved both developers and end-users of the assessed CDSS and was based on practical customisation exercises, installation and application of the decision systems. Potential end-users can benefit from the availability of several ready-to-use CDSS that allow one to run different kinds of models aimed at predicting the behaviour of radionuclides in aquatic ecosystems, evaluating doses to humans, assessing the effectiveness of different kinds of environmental management interventions and ranking these interventions, accounting for their social, economic and environmental impacts. As a result of the present assessment, the importance of CDSS “integration” became apparent: in many circumstances, different CDSS can be used as complementary tools for the decision-making process. The results of this assessment can also be useful for the future development and improvement of the CDSS.  相似文献   

14.
There is a continual supply of new experimental data that are relevant to the assessment of the potential impacts of nuclear fuel waste disposal. In the biosphere, the traditional assessment models are data intensive, and values are needed for several thousand parameters. This is augmented further when measures of central tendency, statistical dispersion, correlations and truncations are required for each parameter to allow probabilistic risk assessment. Recent reviews proposed values for 10-15 key element-specific parameters relevant to (36)Cl, (129)I, (222)Rn, (226)Ra, (237)Np and (238)U, and some highlights from this data update are summarized here. Several parameters for Np are revised downward by more than 10-fold, as is the fish/water concentration ratio for U. Soil solid/liquid partition coefficients, Kd, are revised downward by 10-770-fold for Ra. Specific parameters are discussed in detail, including degassing of I from soil; sorption of Cl in soil; categorization of plant/soil concentration ratios for U, Ra and Np; Rn transfer from soil to indoor air; Rn degassing from surface water; and the Ca dependence of Ra transfers.  相似文献   

15.
There is increasing interest in radiological assessment of discharges of naturally occurring radionuclides into the terrestrial environment. Such assessments require parameter values for the pathways considered in predictive models. An important pathway for human exposure is via ingestion of food crops and animal products. One of the key parameters in environmental assessment is therefore the soil-to-plant transfer factor to food and fodder crops. The objective of this study was to compile data, based on an extensive literature survey, concerning soil-to-plant transfer factors for uranium, thorium, radium, lead, and polonium. Transfer factor estimates were presented for major crop groups (Cereals, Leafy vegetables, Non-leafy vegetables, Root crops, Tubers, Fruits, Herbs, Pastures/grasses, Fodder), and also for some compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content (Sand, Loam, Clay and Organic), and evaluation of transfer factors' dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with estimates currently in use.  相似文献   

16.
Five soil profiles from a site about 8 km SE of the Chernobyl NPP were investigated for the vertical distribution of radionuclides. The average (137)Cs-inventory at the site is about 2.6 MBq/m(2) (reference date 1 May 1986). Apart from (137)Cs, the following radionuclides have been identified (their activity ratios to (137)Cs in brackets): (134)Cs (0.537), (125)Sb (0.068), (60)Co (0.0022), (154)Eu (0.016), (155)Eu (0.020), (94g)Nb (9.5E-5), (239/240)Pu (0.0088), (238)Pu (0.040), (90)Sr (0.30) and (241)Am (0.011). Apparent vertical migration velocities are between 0.14 and 0.26 cm/a, apparent dispersion coefficients range from 0.02 to 0.13 cm(2)/a. The rankings of the velocities v for different radionuclides are (Sr, Cs, Sb, Co, Pu)< Am < Eu and Sr < (Cs, Nb), for D, the following rankings have been found: (Nb, Sr, Cs) < Am < Eu, Cs相似文献   

17.
A big fertilizer industrial complex and a vast extension of phosphogypsum piles (12 km2), sited in the estuary formed by the Odiel and Tinto river mouths (southwest of Spain), are producing an unambiguous radioactive impact in their surrounding aquatic environment through radionuclides from the U-series. The levels and distribution of radionuclides in sediments from this estuarine system have been determined. The analyses of radionuclide concentrations and activity ratios have provided us with an interesting information to evaluate the extension, degree and routes of the radioactive impact, as well as for the knowledge of the different pathways followed for the radioactive contamination to disturb this natural system. The obtained results indicate that the main pathway of radioactive contamination of the estuary is through the dissolution in its waters of the radionuclides released by the industrial activities and their later fixation on the particulate materials. Tidal activity also plays an important role in the transport and homogenization along the estuary of the radioactivity released from the fertilizer plants.  相似文献   

18.
A generic approach has been developed to simulate dynamically the uptake and turnover of radionuclides by marine biota. The approach incorporates a three-compartment biokinetic model based on first order linear kinetics, with interchange rates between the organism and its surrounding environment. Model rate constants are deduced as a function of known parameters: biological half-lives of elimination, concentration factors and a sample point of the retention curve, allowing for the representation of multi-component release. The new methodology has been tested and validated in respect of non-dynamic assessment models developed for regulatory purposes. The approach has also been successfully tested against research dynamic models developed to represent the uptake of technetium and radioiodine by lobsters and winkles. Assessments conducted on two realistic test scenarios demonstrated the importance of simulating time-dependency for ecosystems in which environmental levels of radionuclides are not in equilibrium.  相似文献   

19.
Naturally occurring and artificially produced radionuclides in the environment may be present in different physico-chemical forms (i.e., radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, degree of complexation, etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time-dependent transformation processes such as mobilisation of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, the original distribution of radionuclides deposited in ecosystems will change over time. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews available fractionation techniques which can be utilised for radionuclide speciation purposes.  相似文献   

20.
河流生态系统是地球上最为复杂的生态系统之一,它触及到自然环境所有部分,且几乎与各方面的人类活动均存在直接或间接的联系。河流生态学中最具活力的领域之一就是生态系统健康研究。鱼类是最早建立的生物完整性和健康评价的生物类群,一直以来被广为应用。在调查赣江流域17条一级支流和干流的不同江段的鱼类资源之后,首次通过鱼类完整性指数(F IBI)来评价赣江流域生态系统的健康状态。研究结果表明:赣江流域近70%调查样点鱼类群落完整性处于一般的状态,25%调查样点处于较好状态,5%调查样点则处于差的状态;赣江水系各河流的鱼类群落完整性均处于差-一般的水平。总之,流域支干流的水生态系统健康处于差-一般的状态。认为鱼类完整性受损与人工筑坝和蓄水等人类活动密不可分。建议开展系列补救措施,如增加鱼道或鱼梯等  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号