首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many coral reefs worldwide are rapidly declining, but efficient restoration techniques are not yet available. Here, we evaluate methodologies for reef restoration based on the “gardening concept”. A floating mid-water prototype nursery was placed at 6 m depth (14 m above sea-bottom) within the nutrient-enriched environment of a fish farm (Eilat, Red Sea). Ten colonies from five branching coral species provided 6,813 fragments (0.5–3 cm height). The fragments, each attached to a plastic pin, were inserted into plastic nets that were tied to a rope-net floating nursery. After 144 nursery days, only 13.1% of the fragments died and 21.2% were detached by mechanical forces. Small colonies ready for transplantation developed within 144–200 days. Ramets’ ecological volumes increased 13–46 folds and their heights by a factor of 3.5. After 306 days, the ecological volumes of the colonies increased 147–163 fold as compared to original volumes (revealing a daily growth rate constant of 1.67% during the first 5–10 months) and height values by a factor of six. Building and maintenance costs of the nursery were low. This nursery prototype demonstrates the feasibility of the coral “gardening concept” by fulfilling several important needs, namely, mass production of coral colonies at low costs, high survivorship, fast growth, short nursery phase and improved methodologies for handling farmed colonies.  相似文献   

2.
The present study examined the mode and timing of reproduction of poorly understood deep-water octocorals and the environmental factors that may influence their reproductive patterns. Data on reproductive characteristics of the octocoral Drifa glomerata (Alcyonacea: Nephtheidae) collected between 2004 and 2007 at ca. 100–330 m depth off Newfoundland and Labrador (eastern Canada) were compared among years, months and depth ranges. No male gonad was ever observed during the study. The ratio of fertile colonies possessing large pinkish polyps with oocytes/planulae was >50% throughout the year. The number of brooded planula larvae within a single fertile polyp varied between 1 and 10 for a total of approximately 40–3,000 in a whole colony. The size of oocytes and/or planulae was consistently greater in the polyps than in the branchlets, indicating that the development pathway of oocytes to planulae is from the branchlets to the polyps. Although larval production seemed to persist year round, the onset of major planulation events occurred in December–January of two consecutive years, when large mature planulae were released in correlation with the first increase of photoperiod and maximum temperature at 150 m. A second peak in planulation between April and early June followed the phytoplankton bloom. Seasonal trends were more apparent in colonies from <200 m, and the planula index varied among sampling depths and years. Larval release in a live colony under laboratory conditions occurred between January and June 2008, closely following predictions based on field samples.  相似文献   

3.
The dioecious Red Sea soft coral Parerythropodium fulvum fulvum breeds its nonsymbiotic planula larvae on the surface of female colonies for less than a week. After completing their development, larvae crawl and settle near maternal colonies. Here we study the genetic polymorphism of developing larvae by the use of amplified fragment-length polymorphism markers. Four reproductive colonies from shallow water populations (two from a dense population and two from a less densely populated area 100 m away) were chosen, and ten larvae were randomly collected from each colony. DNA was analyzed by using three different primer combinations producing 61, 63, 63 polymorphic markers, respectively. All larvae exhibited different banding patterns from one another, illustrating the prominent role of sexual reproduction for the production of larvae. Nei's mean genetic distances for all 12 possible pair-wise combinations for larval origins revealed, in most cases, that sister larvae are genetically closer than larvae from different colonies and that larvae may be grouped into three statistical clusters in accordance with colony origin and population studied. The usefulness of molecular methodologies in coral population genetics is discussed. Received: 26 March 1999 / Accepted: 19 October 1999  相似文献   

4.
To test whether coral planulae recruit randomly to different coral reef habitats or have specific substratum preferences, the settling behavior of planulae from two shallow water coral species from Pago Bay, Guam (13°25.02N, 144°47.30E) were examined in the laboratory in June and July of 1995. Goniastrea retiformis is generally restricted to the shallow reef front (<10 m depth) in areas dominated by crustose coralline algae (CCA), while Stylaraea punctata is abundant on inner reef flats were CCA coverage is low and sand and carbonate rubble covered by biofilms is common. When presented with four substrata (1) carbonate rock scrubbed free of biofilm and dried as a control, (2) the CCA Hydrolithon reinboldii, (3) the CCA Peyssonelia sp., and (4) naturally conditioned carbonate rubble covered by a biofilm, G. retiformis larvae showed a significant preference for H. reinboldii, and S. punctata larvae for the carbonate biofilm treatment. The preference shown by S. punctata larvae for biofilmed surfaces did not diminish with increasing larval age up to 11 days. These results suggest that the larvae of both species are capable of habitat selection, and that the preferred substrata among those tested bears a relationship to the habitats in which adult colonies were found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Coral communities were examined from highly turbid near-shore marginal reefs of Abrolhos (Brazil) to test a paradigm previously developed from observations in clear water reefs; specifically, that coral photobiological properties follow a highly conserved linear relationship with optical depth (ζ) via preferential ‘non-photochemical’ over ‘photochemical’ dissipation of absorbed light energy. PAM flourometry in situ was used to examine the photobiology of the most dominant coral species throughout the platform surfaces and bases of Abrolhos’ characteristic ‘chapeir?es’ reef framework; however, none of the species consistently adhered to the ‘clear water paradigm’. PAM measurements further demonstrated that species conformed to two different strategies of non-photochemical energy dissipation: transient but relatively rapid for the two closely related endemic species (Mussismilia braziliensis and Mussismilia harttii) as opposed to more persistent for Montastrea cavernosa, Porites astreoides and Siderastrea stellata. Further experiments demonstrated that tolerance to anomalous stress amongst species did not correspond with the non-photochemical energy dissipation strategy present but was consistent with the relative dominance of species within the chapeir?es coral communities.  相似文献   

6.
The reproductive ecology of Tubastraea coccinea Lesson, an azooxanthellate tropical scleractinian coral, was studied over various periods from 1985 to 2006 at four principal eastern Pacific locations in Costa Rica, Panamá, and the Galápagos Islands (Ecuador). This small (polyp diameter 0.8–1.0 cm), relatively cryptic species produced ova and planulae year round, including colonies with as few as 2–10 polyps. Of 424 colonies examined histologically, 13.7% contained both ova and sperm. Mature ova varied in diameter from ∼300 to 800 μm and the time from spawning and fertilization of oocytes to release of brooded planulae was about 6 weeks. Planulae were 0.5–1.5 mm long and they settled and metamorphosed on a variety of substrates after 1–3 days. Spermaries, though more difficult to distinguish in histological sections, were present throughout the year. Spent spermaries were never observed in sections, but several colonies in Panamá and the Galápagos Islands released sperm from night one to night five after full moon, indicating the potential for cross-fertilization among colonies. Planula release was observed at Uva Island (Panamá) in March, May, June, and July, and in general planula presence was higher at warm ocean temperatures at all sites, whether or not the sites were influenced by seasonal upwelling. Annual fecundity estimates for T. coccinea are comparable with other high fecundity brooding species, including the zooxanthellate Porites panamensis, with which it co-occurs in Panamá. Tubastraea coccinea is widely distributed in the tropical Indo-Pacific and has colonized substrates in the western Atlantic. In addition to the reproductive characteristics described in the present study, other features of the biology of T. coccinea, such as an ability to withstand conditions that produce bleaching and mortality in zooxanthellate species, may account for its widespread, low-latitude distribution in multiple oceans. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

7.
Although coral dwelling fishes are common on coral reefs, the nature of their effect on the host corals is poorly understood. The present study, conducted in the Gulf of Eilat (Red Sea) between July 1989 and August 1990, demonstrated that the branching coral Stylophora pistillata (Esper) benefits, in two components of coral fitness, from the presence of the damselfish Dascyllus marginatus (Rüppell), an obligate coral dweller. The growth rate of damselfish-inhabited corals was significantly higher than that of corals without damselfish. This was observed, using two growth assessment methods, in long-term (>7 mo) comparisons between: (1) corals where the damselfish were experimentally removed versus corals with unaltered fish groups; and (2) naturally inhabited versus non-inhabited corals. The presence of damselfish did not affect the coral's specific (per surface area) reproductive output, whether it was assessed by the number of female gonads per polyp or by the number of planulae released cm-2 surface area d-1. However, the more rapid increase in branch size in damselfish-inhabited corals resulted in an apparent increase in the total reproductive output, with age, in growing corals. These findings demonstrate that the association between the damselfish D. marginatus and its host coral, S. pistillata, is mutualistic.  相似文献   

8.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

9.
Capnella gaboensis Verseveldt, 1977 was sampled at four sites in Sydney Harbour, during 1981–1984. This soft coral has an annual cycle of gonad development, with gonad number reaching a peak in May several weeks prior to spawning, and gonad size reaching a peak in May–June at spawning. The gonads develop during the warm months, and colonies spawn their gametes in late autumn and early winter. Gonad development is neither synchronous within colonies nor within populations, possibly reflecting the protracted nature of spawning. The histology of the developing oocytes and spermaries is described in detail C. gaboensis is a surface-brooder. The planulae are similar in structure to the larvae of other octocorals. The larvae are benthic, settling quickly upon suitable substratum, metamorphosing into polyps with mouths, tentacles and spicules, approximately one week after settling.  相似文献   

10.
Effects of ambient ultraviolet light on the survivorship of eggs and planulae larvae was investigated for three species of broadcast-spawning reef corals, Acropora palmata, Montastraea annularis, and M. franksi. Eggs and larvae from these corals contain high concentrations of lipids (60–70% by weight) and float in surface waters for 3–4 days following spawning. Larvae originating from colonies living at deeper sites on the reef exhibited significantly lower survivorship than conspecifics originating from parents in shallow water when experimentally exposed for up to 4 days to ambient surface levels of ultraviolet radiation (UVR). Concentrations of the UVR-protective compounds correlated positively with survival and matched concentrations found in parent colonies, implying that higher concentrations of ultraviolet B protective compounds are responsible for greater survival of eggs and larvae from shallow compared to deeper-dwelling parents. Ultraviolet B appears to be responsible for most of the observed differences in larval survivorship with ultraviolet A playing a minor or insignificant role. Data presented here indicate that coral recruits on Caribbean reefs and elsewhere may originate primarily from adult colonies dwelling in shallow water.Communicated by P.W. Sammarco, Chauvin  相似文献   

11.
Pocillopora damicornis (Linnaeus) were collected from Enewetak Atoll, Marshall Islands, in 1980–1981) and Kaneohe Bay, Hawaii, in 1982. Their planula larvae contained 17% protein, 70% lipid, and 13% carbohydrate by dry weight. Calculations based on stored energy reserves and daily metabolic expenditure indicate that planulae could survive approximately 100 d and still settle successfully. Competency experiments demonstrated that larvae settled and metamorphosed after 103 d. This period of time is sufficient to allow immigration of larvae from the Central Pacific to the eastern Pacific, and supports the hypothesis of long-distance dispersal of larvae for the origin of present eastern Pacific populations of P. damicornis.  相似文献   

12.
The long-distance dispersal of larvae provides important linkages between populations of reef-building corals and is a critical part of coral biology. Some coral planulae have symbiotic dinoflagellates (Symbiodinium spp.) that probably provide energy in addition to the lipids provisioned within the egg. However, our understanding of the influence of symbionts on the energy metabolism and survivorship of planulae remains limited. This study examines the relative roles of symbiotic dinoflagellate photosynthesis and stored lipid content in the survivorship of the developing stages of the corals Pocillopora damicornis and Montipora digitata. We found that survivorship decreased under dark conditions (i.e. no photosynthetic activity) for P. damicornis and M. digitata at 31 and 22 days after release/spawning, respectively. The lipid content of P. damicornis and M. digitata planulae showed a significant decrease, at a higher rate, under dark conditions, when compared with light conditions. When converted to energy equivalents, the available energy provided by the depletion of lipids could account for 41.9 and 84.7% of larval metabolism for P. damicornis (by day 31) and 38.4 and 90.1% for M. digitata (by day 21) under light and dark conditions, respectively. This finding indicates that not all energy requirements of the larvae are met by lipids: energy is also sourced from the photosynthetic activities of the symbiotic dinoflagellates within these larvae, especially under light conditions. In addition, the amounts of three main lipid classes (wax esters, triglycerides, and phospholipids) decreased throughout the experiment in the planulae of both species, with the wax ester content decreasing more rapidly under dark conditions than under light conditions. The observations that the planulae of both species derive considerable amounts of energy from wax esters, and that symbiotic dinoflagellates enable larvae to use their stores at lower rates, suggested that symbiotic dinoflagellates have the potential to extend larval life under light conditions.  相似文献   

13.
Common Hawaiian and Enewetak corals were examined to determine the method and mining of reproduction. Of the 7 Hawaiian species examined for the release of planulae, only 2 have planulated in captivity, Pocillopora damicornis and Cyphastrea ocellina. Both planulate year-round and both are characteristic of reef flats. Four of the 5 species which did not planulate were found to contain eggs, but not planulate, when polyps were examined microscopically. These 5 species do not usually occur on reef flats. Seven of the 12 Enewetak species examined in June, July, August and January planulated; 4 of these were pocilloporids, all of which are common in shallow water. Only 3 of the 8 species of Acropora planulated, and these 3 occur solely in shallow water. A greater proportion of the Pocillopora spp. colonies than Acropora spp. colonies planulated and they released more planulae per head. In previous studies and in this one, coral species which have released planulae are characteristic of shallow-water environments such as reef flats. Most of the 10 species reported on here which failed to planulate in captivity are not commonly found on reef flats. The failure to detect planulation in so many species, particularly those of deeper water, suggests that common hermatypic corals may not all reproduce in the same way, and that mode of reproduction may be related to habitat.  相似文献   

14.
We tested the rarely considered hypothesis that the ultraviolet portion (UVR, 280–400 nm) of the light spectrum affects patterns of recruitment in reef-building corals. The premise for this hypothesis rests in the fact that biologically relevant intensities of UVR penetrate to considerable depths (>24 m) in the clear waters surrounding many coral reefs, and that reef organisms allocate substantial resources to prevent and repair UVR damage. The ability of larvae spawned by the brown morph of the Caribbean coral, Porites astreoides, to detect and avoid UVR was assessed in petri dishes where one-half of the dish was shielded from UVR and the other exposed. Observations made every 30 min between 10:30 and 13:30 h showed significantly higher densities of larvae swimming in regions shielded from UVR. To determine how this behavior affects settlement patterns, larvae collected from P. astreoides adults at 18 m depth were released into chambers deployed at 17 m depth where they were given a choice of three different light regions in which to settle: PAR (PAR=400–700 nm), PAR+UVAR (UVAR=320–400 nm), and PAR+UVAR+UVBR (UVBR=280–320 nm). At the end of the experiment, greater numbers of P. astreoides larvae had settled in the region of the tube where UVR was reduced than would be expected if dispersion were random. To our knowledge, this is the first demonstration in any reef-building coral species that planula larvae can detect UVR and that it affects their choice of a settlement site. These results indicate that the capacity to detect and avoid habitats with biologically damaging levels of UVR may be one factor contributing to the successful recruitment of coral larvae.  相似文献   

15.
Campanularia everta is an epiphytic hydroid that may form dense populations on the macroalga Halimeda tuna. The main objects of this study were to quantify sexual reporduction and estimate sexual reproductive output of this hydroid. Sexual reproduction occurred from mid-October to mid-December 1991 along the Spanish Mediterranean coast. During this period, male and female colonies formed gonangia. Four oocytes mature in each female gonangium, and embryonic development starts probably after internal fertilization occurs. Planulae complete their development within a mucus sheath attached to the top of the gonotheca (acrocyst). Eight successive gonangia with a life-span of 1 wk each were formed over a 2 mo period. The fertile period was characterized by high initial production of gonangia followed by a progressive decline resulting from a decrease both in the number of fertile colonies and in the gonangia density of fertile colonies. Annual production was estimated at 42000 gonangia m-2, representing 83000 oocytes m-2. The high fertilization rates observed (77 to 100%) yielded a minimum production of 64000 planulae m-2. Reproduction in C. everta is characterized by: (1) a high number of larvae produced m-2; (2) formation and gradual release of larvae throughout the sexual reproduction period; (3) direct formation of planulae with no intermediate medusa stage; (4) low dispersive ability of the planula. All these mechanisms are part of a reproductive strategy designed to ensure the permanence of the population in its habitat.  相似文献   

16.
It is speculated that differences in coral bleaching susceptibility may be influenced by the genotype of in hospite Symbiodinium and their differential responses to bleaching stressors. Photoinhibition of photosystem II (PSII), damage to the D1 (psbA) PSII reaction centre protein and production of reactive oxygen species by in hospite Symbiodinium are likely precursors of coral bleaching. In order to assess whether photorepair rates of in hospite Symbiodinium underlie the bleaching susceptibility of their hosts, photoinhibition (net and gross), photoprotection and photorepair rates were assessed in a bleaching-‘tolerant’ coral (P. astreoides) and a bleaching-‘sensitive’ coral (M. faveolata) using non-invasive fluorometric techniques and by blocking de novo synthesis of psbA. Previous studies using such techniques have demonstrated that in vitro Symbiodinium types ‘sensitive’ to bleaching stressors had reduced rates of photorepair relative to ‘tolerant’ Symbiodinum types. Our measurements demonstrated that Symbiodinium in the more bleaching tolerant P. astreoides had higher photorepair rates than Symbiodinium in M. faveolata. Higher repair rates in P. astreoides resulted in lower net photoinhibition relative to M. faveolata, where both corals exhibited similar susceptibility to photodamage (gross photoinhibition). Photoprotective mechanisms were observed in both corals; M. faveolata exhibited higher antennae-bed quenching than P. astreoides at low-light intensities, but at and above light-saturating intensities, which are different for each coral species, P. astreoides displayed more efficient non-photochemical quenching (Stern–Volmer quenching) of chlorophyll fluorescence than M. faveolata. Increased NPQ by P. astreoides at E/E k ≥ 1 was not driven by antennae-bed quenching. The ability of in hospite Symbiodinium in P. astreoides to mitigate the effects of photoinhibition under high light conditions compared with Symbiodinium in M. faveolata, and their high repair capacity following photoinhibition, may be a key factor to consider in future bleaching studies and may underlie the relative bleaching tolerance of P. astreoides compared to M. faveolata.  相似文献   

17.
Stages in the life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) were reared in the laboratory from planula to young medusa and are described here. Fertilization of eggs was external, and planulae, 110–150 μm in length, appeared after 2 days. These settled and developed into the scyphistoma stage. Scyphistomae reached a maximum size of 2.3 mm, bore up to 24 tentacles, and had a large manubrium. Polyps reproduced asexually mainly by podocysts. Strobilation was induced by temperature change. Each strobila released up to five ephyrae that measured 2.7–5.8 mm in diameter at liberation. During transformation from newly released ephyra to young medusa, velar lappets appeared and increased in number, the manubrium developed eight branched oral arms with epaulettes, and a marginal gastric network arose. Only one cnidocyst type, the “a”-atrichous haploneme, was present in the planula. In addition to these haplonemes, heterotrichous microbasic euryteles were observed in polyps, ephyrae, and medusae. Statoliths, located in the rhopalia, had a characteristic compact shape. These sensory structures increased in number and size with the growth of ephyrae and medusae.  相似文献   

18.
B. L. Kojis 《Marine Biology》1986,91(3):311-318
In contrast to the seasonal gamete and planula production of Acropora (Isopora) palifera on Heron Island reef (Lat. 23° S), populations on Lizard Island reef (Lat. 14° S), sampled in 1979, 1981 and 1983, and Salamaua and Busama reefs (Lat. 7° S), sampled from 1980 to 1983, planulated year-round. Intensive sampling of colonies at Salamaua and Busama showed that gametes ripened at two-month intervals and that up to six cycles of gametes and larvae could be produced by an individual colony. Gametes of only a portion of the population — usually close to 50% — ripened each month. The Salamaua population, on average, produced fewer and smaller planulae than the Heron Island population during each two-monthly reproductive cycle. Hypotheses correlating the annual periodicity of breeding in marine animals with latitudinal variation of temperature were tested. In general, the time of breeding in A. palifera at Heron Island reef is much more restricted than theories based on latitudinal variations of water temperature would predict. It is hypothesized that, in the near subtropical environment of Heron Island reef, this species has evolved a life-history strategy that limits the amount of energy allocated to reproduction and allocates more energy to growth.  相似文献   

19.
We compared densities, distributions and size frequencies of massive corals in the genus Porites on five relatively exposed, mid-shelf reefs (50 km offshore) in the central Great Barrier Reef with those on a sheltered inshore reef (10 km offshore). Data included various transect and mapping studies between 1984 and 1990, estimates of size-dependent damage from the crown-of-thorns starfish Acanthaster planci, estimated densities of herbivorous sea urchins (potential predators of juveniles), and observations of size-specific effects of tropical cyclones. Assemblages of Porites spp. on mid-shelf reefs were dominated by small colonies (2 to 10 cm diam) established either from planula larvae or from small tissue remnants that had survived A. planci predation in the early to mid-1980s. Large colonies (up to 10 m diam) were scarce, except for localized aggregations on terraces at the base of reef slopes (6 to 12 m deep). Extensive space suitable for settlement by coral larvae can be attributed to recurrent cyclones and A. planci outbreaks. Despite low sea urchin predation, the slowly growing Porites juveniles are likely to die from overgrowth by numerous, much faster growing corals. On the sheltered inshore reef, the coral community was dominated by very large (>5 m diam) Porites colonies, several centuries old; recruitment was mainly by fragmentation of large colonies; there was little space available for settlement, and probabilities of juvenile mortality from grazing urchins were high. Differences in settlement and early survival of Porites spp. are exacerbated by different regimes of storm damage. A model is proposed that links wave climate with the size and age reached by corals before dislodgement by storm waves, and which is consistent with observed densities and size-frequency distributions of Porites in sheltered and exposed areas.  相似文献   

20.
Seasonal variation in coral reef macroalgal size and condition is well documented, yet seasonal variability of herbivory on macroalgae by coral reef fishes is unknown. Herbivore feeding intensity was quantified monthly on an inner-shelf reef on the Great Barrier Reef, using Sargassum bioassays. Removal rates of transplants displayed high levels of variation with significantly higher rates of removal during the summer months. Differences in Sargassum plant size and condition suggest that the variability in herbivore feeding intensity is attributed primarily to the variation in the condition of the macroalgae, especially epiphyte loads. The dramatic changes in macroalgal removal reveal a considerable decrease in herbivore activity in the winter. This highlights the clear distinction between ‘summer’ and ‘winter’ months in terms of reef processes, emphasizing the high seasonal variation in macroalgal removal rates at different time of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号