首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Environmental Science and Pollution Research - To investigate the causative component for certain health outcomes, the associations between the properties of ambient particles and cause-specific...  相似文献   

2.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

3.
Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg−1 (of dry wood burned)), carbon monoxide (CO) (120 g kg−1) and fine particle mass (PM1) (2.7 g kg−1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9–9 g kg−1 TVOC, 28–68 g kg−1 CO and 0.6–1.6 g kg−1 PM1. The emission of 12 PAHs (PAH12) from the sauna stove was 164 mg kg−1 and consisted mainly of PAHs with four benzene rings in their structure. PAH12 emission from other appliances was, on average, 21 mg kg−1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.  相似文献   

4.
Fine particle composition data obtained at three sampling sites in the northeastern US were studied using a relatively new type of factor analysis, positive matrix factorization (PMF). The three sites are Washington, DC, Brigantine, NJ and Underhill, VT. The PMF method uses the estimates of the error in the data to provide optimal point-by-point weighting and permits efficient treatment of missing and below detection limit values. It also imposes the non-negativity constraint on the factors. Eight, nine and 11 sources were resolved from the Washington, Brigantine and Underhill data, respectively. The factors were normalized by using aerosol fine mass concentration data through multiple linear regression so that the quantitative source contributions for each resolved factor were obtained. Among the sources resolved at the three sites, six are common. These six sources exhibit not only similar chemical compositions, but also similar seasonal variations at all three sites. They are secondary sulfate with a high concentration of S and strong seasonal variation trend peaking in summer time; coal combustion with the presence of S and Se and its seasonal variation peaking in winter time; oil combustion characterized by Ni and V; soil represented by Al, Ca, Fe, K, Si and Ti; incinerator with the presence of Pb and Zn; sea salt with the high concentrations of Na and S. Among the other sources, nitrate (dominated by NO3) and motor vehicle (with high concentrations of organic carbon (OC) and elemental carbon (EC), and with the presence of some soil dust components) were obtained for the Washington data, while the three additional sources for the Brigantine data were nitrate, motor vehicle and wood smoke (OC, EC, K). At the Underhill site, five other sources were resolved. They are wood smoke, Canadian Mn, Canadian Cu smelter, Canadian Ni smelter, and another salt source with high concentrations of Cl and Na. A nitrate source similar to that found at the other sites could not be obtained at Underhill since NO3 was not measured at this site. Generally, most of the sources at the three sites showed similar chemical composition profiles and seasonal variation patterns. The study indicated that PMF was a powerful factor analysis method to extract sources from the ambient aerosol concentration data.  相似文献   

5.
Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM2.5) concentration in moving cars with different window opening conditions. The PM2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM2.5 concentrations were 16–17 μg m?3. Regardless of different window opening conditions, the PM2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM2.5 levels were 506–1307 μg m?3 with different window opening conditions. When smoking was ceased, the average PM2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m?3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.  相似文献   

6.
Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM2.5 concentration (13.2 ± 13.7 µg/m3) was similar to the average measured Grimm 11-R PM2.5 concentration (11.3 ± 15.1 µg/m3). The overall correlation (r2) for PM2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m3) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m3) with an r2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.

Implications: The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM2.5 and coarse PM (PM10-2.5) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.  相似文献   


7.
A goal of the acidic deposition control program in the United States has been to link emissions control policies, such as those mandated under Title IV of the US Clean Air Act Amendments (CAAA) of 1990, to improvements in air and water quality. Recently, several researchers have reported trends in the time series of pollutant data in an effort to evaluate the effectiveness of the CAAA in reducing the acidic deposition problem. It is well known that pollutant concentrations are highly influenced by meteorological and climatic variations. Also, spatial and temporal inhomogeneities in time series of pollutant concentrations, induced by differences in the data collection, reduction, and reporting practices, can significantly affect the trend estimates. We present a method to discern breaks or discontinuities in the time series of pollutants stemming from emission reductions in the presence of meteorological and climatological variability. Using data from a few sites, this paper illustrates that linear trend estimates of concentrations of SO2, aerosol SO42−, and precipitation-weighted SO42− and NO3 can be biased because of such complex features embedded in pollutant time series.  相似文献   

8.
Efraim Halfon 《Chemosphere》1985,14(9):1433-1440
A recently invented statistical method, the bootstrap, is used to verify whether a hypothesis, developed from a limited data set, would be valid if all possible data would have been available, i.e. this statistical method allows generalization to chemicals of the same class not included in the original analysis. The validity of the relation, hypothesized by Neely, between the water solubility of an organic chemical and the ratio of the acute fish LC50 at two different time periods has been tested. The hypothesis has been shown correct by first fitting a linear model with a geometric mean (GM) functional regression, which takes into account errors in both the independent and dependent variables, to compare observed and predicted ratios; the generality of the model has been tested by computing the confidence limits of the correlation coefficient, of the slope and intercept of the GM regression model using the bootstrap. The results show that the correlation between predicted and observed data is statistically significant within one standard deviation, but sometimes it may not be significant at the 95% confidence limit. Neely's model is probably correct but it might have a systematic bias which makes the theoretical ratio somewhat higher than the observed ratio.  相似文献   

9.
This study is believed to be one of the first to assess the impact of urban VOC-(volatile organic compound) contaminated groundwater on river-water quality at the city scale. A network of riverbed piezometers was used to study the 7.4-km urbanised reach of the River Tame that flows across the groundwater-effluent unconfined Triassic sandstone aquifer underlying the city of Birmingham (UK). Aquifer groundwater contained significant chlorinated VOC contamination due to the city's industrial heritage. Chlorinated VOC-contaminated baseflow was widespread along the reach with trichloroethene (TCE) dominant. VOC concentrations in riverbed piezometers were in the range 0.1-100 microg/l with typical regulatory limits occasionally exceeded by an order of magnitude. Although anaerobic biodegradation products such as cis-dichloroethene were widespread, they were unlikely to have formed in the generally aerobic riverbed. The lack of anaerobic conditions was ascribed to insufficient accumulation of low-permeability, organic-carbon rich riverbed sediments in this medium-high energy river. Assumptions a priori that natural attenuation of chlorinated VOCs will occur via reductive dechlorination in urban riverbeds are likely in error, particularly where deposits of medium-high permeability exist transmitting much of the baseflow. Surface-water quality impacts were nevertheless still low with in-river TCE increasing by just 2 microg/l over the 7.4-km reach. Agreement of baseflow contaminant flux estimates based on five flow-concentration product methods was achieved to within an order of magnitude with 22-200 kg/yr of TCE estimated to discharge to the 7.4-km reach (equivalent to 0.8-7.5 mg/d/m2 of riverbed). Such uncertainty was not regarded as unreasonable when the large measurement scale and geological and chemical heterogeneities are considered. Improved flux estimation methods and greater monitoring densities are nevertheless warranted. Considering Birmingham's long industrial history and known incidence of VOC-contaminated groundwater, the city-scale impact of VOC-contaminated groundwater upon surface-water quality was judged to be relatively modest.  相似文献   

10.
A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).  相似文献   

11.
One of two topics explored is the limitations of the daily average in summarizing pollutant hourly profiles. The daily average of hourly measurements of air pollutant constituents provides continuity with previous studies using monitoring technology that only provided the daily average. However, other summary statistics are needed that make better use of all available information in 24-hr profiles. The daily average reflects the total daily dose, obscuring hourly resolution of the dose rate. Air pollutant exposures with comparable total daily doses may have very different effects when occurring at high levels over a few hours as opposed to low levels over a longer time. Alternative data-based choices for summary statistics are provided using principal component analysis to capture the exposure dose rate, while preserving ease of interpretation. This is demonstrated using the earliest hourly particle concentration data available for El Paso from archived records of particulate matter (PM)10. In this way, a significant association between evening PM10 exposures and nonaccidental daily mortality is found in El Paso from 1992 to 1995, otherwise missed using the daily average. Secondly, the nature and, hence, effects of particles in the ambient aerosol during El Paso sandstorms is believed different from that of particles present during still-air conditions resulting from atmospheric temperature inversions. To investigate this, wind speed (ws) is used as a surrogate variable to label PM10 exposures as Low-ws (primarily fine particles), High-ws (primarily coarse particles), or Mid-ws (a mixture of fine and coarse particles). A High-ws evening is significantly associated with a 10% lower risk of mortality on the succeeding third day, as compared with comparable exposures at Low- or Mid-ws. Although this analysis cannot be used to form firm conclusions because it uses a very small data set, it demonstrates the limitations of the daily average and suggests differential toxicity for different particle compositions.  相似文献   

12.
Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi-volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass.  相似文献   

13.
Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km. This dataset was completed by 5 years of monthly profiles above Novosibirsk. Particle number concentration was measured in the size ranges 3–70 and 70–200 nm, along with other tracers. Free troposphere (FT) particle concentrations (N3–200) varied between 60 and 460 cm?3, inferior to boundary layer concentrations (100–7000 cm?3). In April, high concentrations of ~500 cm?3 were observed in a polluted air mass recently uplifted at 5–6 km altitude over eastern Siberia, with no sign of significant new particle formation. In September, particle concentrations decreased with altitude, but with a steeper gradient in N70–200 compared to N3–70, the latter accounting for 90% of the total particle concentration in the free troposphere at 6–7 km altitude. Because ultra-fine particles presumably have short lifetimes, these observed particles could have been formed in situ in the clean Siberian atmosphere. Two cases of possible nucleation with high concentration and N3–70/N70–200 ratios are reported for the September campaign, in the upper troposphere and in cloud outflow in the mid-troposphere. In the seasonal analysis, a FT N3–70 maximum is found in July–August between 6 and 7 km altitude, with N3–70 accounting for ~90% of N3–200 supporting the hypothesis of in situ formation in the FT. A secondary FT maximum of N3–70 was identified later in autumn. In the boundary layer, seasonally maximum N3–70 concentrations were found over Novosibirsk in May and September, but not in summer, possibly due to scavenging by precipitations and a large condensational sink from biomass burning aerosols. Our dataset has a limited size resolution and no speciation capability; more investigation is thus required to understand the conditions leading to in situ nucleation processes in the Siberian air shed.  相似文献   

14.
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g−1 soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.  相似文献   

15.
16.
A high volume electrostatic field-sampler was developed for collection of fine particles, which easily can be recovered for subsequent sample characterisation and bioassays. The sampler was based on a commercial office air cleaner and consisted of a prefilter followed by electrostatic collection plates operating at 2.7 kV. The sampler performance was characterised for 26 nm to 5.4 μm-size particles in urban street air. The collection efficiency reached a maximum (60–70%) between 0.2 and 0.8 μm and dropped to ∼25% at 30 nm and 2.5 μm, respectively. After extraction in water, the particle loss was<2%. The extraction efficiency for dry lyophilised particulate matter was above 80%, allowing retrievement of ∼12 mg day−1 in urban street air at PM10 levels of ∼24 μg m−3. The ozone generating capacity of the corona discharge during operation was on the order of 10 ppb. A polycyclic aromatic hydrocarbons (PAH) degradation test using benzo[a]pyrene as a model showed that ∼85% was degraded after 24 h. However, similar results were observed when the corona discharge was switched off. Hence, the ozone and other corona discharge reactants do not appear to contribute considerably to PAH-degradation. The overall results show that the sampler type is a promising alternative to traditional sampling of fine particles for bulk analysis and bioassays. The main advantages are simple operation, high stability, high quantifiable particle recovery rates and low cost.  相似文献   

17.
In accordance with the Clean Air Act, the U.S. Environmental Protection Agency (EPA) is currently reviewing its National Ambient Air Quality Standards for particulate matter, which are required to provide an adequate margin of safety to populations, including susceptible subgroups. Based on the latest scientific, health, and technical information about particle pollution, EPA staff recommends establishing more protective health-based fine particle standards. Since the last standards review, epidemiologic studies have continued to find associations between short-term and long-term exposure to particulate matter and cardiopulmonary morbidity and mortality at current pollution levels. This study analyzed the spatial and temporal variability of fine particulate (PM2.5) monitoring data for the Northeast and the continental United States to assess the protectiveness of various levels, forms, and combinations of 24-hr and annual health-based standards currently recommended by EPA staff and the Clean Air Scientific Advisory Committee. Recommended standards have the potential for modest or substantial increases in protection in the Northeast, ranging from an additional 13-83% of the population of the region who are living in areas not likely to meet new standards and thereby benefiting from compliance with more protective air pollution controls. Within recommended standard ranges, an optimal 24-hr (98th percentile)/annual standard suite occurs at 30/12 microg/m3, providing short- and long-term health protection for a substantial percentage of both Northeast (84%) and U.S. (78%) populations. In addition, the Northeast region will not benefit as widely as the nation as a whole if less stringent standards are selected. Should the 24-hr (98th percentile) standard be set at 35 microg/m3, Northeast and U.S. populations will receive 16-48% and 7-17% less protection than a 30 microg/m3 standard, respectively, depending on the level of the annual standard. A 30/12 microg/m3 standard suite also provides nearly equivalent 24-hr and annual control of PM2.5 distributions across the United States, thereby ensuring a more uniform and consistent level of protection than unmatched or "controlling" and "backstop" standards. This could occur even within EPA staff's recommended range of standard suites, where 22-43% of the monitors in the country could meet a controlling standard but fail to meet the combined backstop standard, resulting in inconsistent short- and long-term protection across the country. An equivalent standards combination of 30/12 microg/m3 would minimize the wide variation of protectiveness of 24-hr and annual PM2.5 concentrations. Furthermore, given recent associations of subdaily exposures and acute adverse health effects, in the absence of a subdaily averaging metric, a stringent 24-hr standard will more effectively control maximum hourly and multihourly peak concentrations than a weaker standard.  相似文献   

18.
19.
An inevitable external effect of economic growth, especially for countries in the early stages of growth, is air pollution. The Taiwan experience is a case in point. To control the pollution, Taiwan created the Environmental Protection Administration. This paper assesses the impact of the administration's abatement policy on a primary component of air pollution, carbon monoxide. Using recent advances in time series analysis, we fail to find evidence of a successful policy. If carbon monoxide is to be significantly reduced, it appears that the Administration needs to adopt more stringent standards and innovative approaches.  相似文献   

20.
The Red Data Book of Japanese Vascular Plants is based on their risk of extinction. In order to construct the list, 2000 taxa were evaluated using population data and rates of decline for approximately 4400 grids, each of approximately 100 km(2). This database can be used to estimate the impact of human activity on a threatened plant's risk of extinction. In order to evaluate extinction risks and apply the evaluation to conservation actions, the discount mean time to extinction is defined as a measure of extinction risk, where the present value of a species' persistence in the future decreases exponentially. The rate of decrease has to be much less than the rate of economic discounting, in order to realize intergenerational sustainability. Increases of the inverse, and logarithm, of the discount mean time to extinction are considered measures of the extinction risk. We applied these measures to an environmental impact assessment for the Japanese World Exposition that is to be held in 2005. Development will have a greater impact on threatened Salvia species than it will on star magnolia, Magnolia tomentosa, which has been conserved by changing the site plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号