首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 157 毫秒
1.
实验研究了旋流塔板叶片仰角对钙基湿法烟气脱硫工艺的影响。结果表明,一般情况下,叶片仰角增大,脱硫率有所下降,塔的运行稳定性有所下降,结垢有所增加。因此,在将麻石水膜除尘器改造成旋流板塔脱硫除尘系统的过程中,增大叶片仰角的同时一定要考虑脱硫率的下降问题。  相似文献   

2.
郭志  刘志敏 《环境工程学报》2020,14(5):1320-1328
为了研制低运行能耗和高脱硫效率的新型脱硫塔,以满足国家最新环保超低排放标准,采用基于气液悬浮旋切掺混的气动旋流塔脱除燃煤烟气中的SO_2污染物,对其内部气动旋流单元的强化传质脱硫性能进行探究,考察了空塔喷淋段和气动旋流段的喷淋层位置和液气比对脱硫效率及系统阻力的影响,并对气动旋流单元的脱硫效率进行了理论计算模拟。结果表明:喷淋层距浆液池高度越高,液滴在吸收区停留的时间越长,脱硫效率越高,系统运行阻力也越大;增加液气比,可显著提高系统的脱硫效率,单层喷淋层阻力约为150 Pa;在低pH工况下,SO_2吸收过程为液膜控制,气动旋流单元的脱硫效率较低;随着pH的增大,SO_2吸收过程逐渐由液膜控制转变为双膜甚至气膜控制,气动旋流单元的脱硫效率逐渐增强;当pH=5时,液气比=25 L·m~(-3),5层喷淋层运行工况下的脱硫效率高达99.82%。气动旋流单元的脱硫效率模拟计算结果表明:在高pH下,气动旋流单元的脱硫效率更高;当pH=5.5时,气动脱硫单元的脱硫效率为62.56%,阻力为360 Pa,实验数据与理论计算曲线吻合较好。以上研究结果可为新型高效燃煤机组脱硫超低排放改造技术的开发及其在环境污染控制领域的应用提供参考。  相似文献   

3.
石灰-石膏法旋流板塔脱硫技术及其应用   总被引:1,自引:0,他引:1  
石灰-石膏法旋流板塔烟气脱硫技术将石灰-石膏法脱硫工艺与高效传质的旋流板塔设备相结合,具有运行可靠性高、脱硫效率高、一次性投资低、运行费用低的优点.该技术已成功应用于江苏某企业3台170 t/h煤粉炉烟气脱硫除尘,其运行效果均达到或超过设计值,并通过环保验收,为企业带来了可观的经济效益和环境效益.  相似文献   

4.
湍球塔和喷淋塔的海水脱硫冷态实验对比   总被引:1,自引:0,他引:1  
通过湍球塔和喷淋塔的海水脱硫冷态实验对比,研究海水脱硫过程中烟气和海水参数对湍球塔和喷淋塔脱硫的不同影响。实验结果表明,SO2分压力增大,脱硫效率和尾水pH值减小;海水碱度、pH值和液气比增大,脱硫效率和尾水pH值也随之增大;湍球塔的脱硫效率和尾水pH值与液气比改变方式无关,实验用湍球塔的合适液气比值为2.3 L/m3;湍球塔脱硫实验中,塔内气速为1.58 m/s,SO2分压力为20 Pa,水温为10.2℃,液气比为1.1~2.8 L/m3时,尾水pH值在2.4~2.8之间;增大液气比时,喷淋塔改变海水流量的脱硫效果要比改变气体流量的脱硫效果明显;塔内气速1 m/s以上时,一级喷淋塔的脱硫效率要比湍球塔小很多,有时只有湍球塔的1/2左右。  相似文献   

5.
2×25 MW机组旋流板塔双碱法烟气脱硫除尘   总被引:8,自引:0,他引:8  
2× 2 5MW发电机组烟气处理工程采用旋流板塔及双碱法工艺 ,取得了脱硫除尘一体化的效果 ,经济技术指标总体上优于国内外其他 FGD技术 ,是国内自行设计施工新建的最大烟气脱硫装置。经浙江省环境监测中心站监测 ,脱硫效率达到 89.4 % ,除尘效率达到 97.8% ,符合工程设计要求及我国相关环境标准。  相似文献   

6.
应用标准k-ε模型、DPM模型和物质输运与化学反应模型模拟烟气循环流化床脱硫的两相流动及化学反应,模拟结果和实验数据符合较好。提出了一种旁通式烟气循环流化床,并进一步研究了钙硫比和脱硫剂粒径对旁通脱硫塔脱硫效率的影响。结果表明,脱硫剂颗粒粒径从15μm增大到300μm时,旁通式脱硫塔的脱硫效率略有降低但变化不大;当钙硫摩尔比从0.8增大到1.3时,脱硫效率随之有明显的增加,当钙硫比大于1.3时,脱硫效率随钙硫比的增大略有增加。  相似文献   

7.
某中药厂4 t/h燃煤锅炉烟气采用湿式旋流脱硫除尘一体化装置取得了良好的效果,经实际运行测定除尘率达95%,脱硫率达77%,排出的烟气均能达到排放标准.该净化装置具有旋风水膜除尘器和湿式旋流板洗涤器的双重功能,通过介绍该一体化装置的机理、设计参数和技术经济分析,为燃煤锅炉烟气的脱硫除尘提供参考.  相似文献   

8.
采用旋流板式塔,考察了在吸收剂中添加正辛醇或异辛醇前后氨的气液传质性能.实验结果表明,在氨气体积分数为0.80%、气体流量为0.8 m3/min、吸收剂水力负荷为0~1.62 m3/(m2·h)的条件下,添加1.00 g/L的正辛醇或异辛醇,溶液的表面张力下降,旋流板式塔的理论板数升高;而在稀硫酸溶液中加入正辛醇或异辛醇后,却不利于氨气的传质.运用matlab软件对结果进行回归分析,建立了旋流板式塔的理论板数与其影响因素的回归方程.  相似文献   

9.
湿式逆流喷淋脱硫塔中SO_2吸收特性的研究   总被引:1,自引:1,他引:0  
根据双模吸收理论及SO2在溶液中电离特性,建立了逆流喷淋塔的SO2吸收模型,在考虑浆液飞溅到塔壁的影响后,模拟结果与实验值吻合较好。根据吸收模型,对塔内液气比和浆液的含固率等因素进行了分析。研究表明:减少浆液飞溅到塔壁可提高浆液利用率及脱硫装置性能;根据烟气中SO2的初始浓度及最终脱硫效率,可合理选择液气比及吸收时间(塔的高度);浆液中的含固率直接影响到SO2的吸收速率、循环浆液量、脱硫效率及浆液中SO2浓度等,在液气比较小时,含固率对脱硫效率的影响尤其明显。  相似文献   

10.
根据双模吸收理论及SO2在溶液中电离特性,建立了逆流喷淋塔的SO2吸收模型,在考虑浆液飞溅到塔壁的影响后,模拟结果与实验值吻合较好。根据吸收模型,对塔内液气比和浆液的含固率等因素进行了分析。研究表明:减少浆液飞溅到塔壁可提高浆液利用率及脱硫装置性能;根据烟气中SO2的初始浓度及最终脱硫效率,可合理选择液气比及吸收时问(塔的高度);浆液中的含固率直接影响到SO2的吸收速率、循环浆液量、脱硫效率及浆液中SO2浓度等,在液气比较小时,含固率对脱硫效率的影响尤其明显。  相似文献   

11.
粉末 颗粒喷动床 (powder particlespoutedbed ,PPSB)是近几年来由日本研究人员开发的一种新的半干法烟气脱硫技术。本文介绍了PPSB的基本原理、优点以及在试验条件下所得到的影响因素和适宜的运行方式。PPSB在系统结构、废物处理、操作和费用方面比湿法有所提高 ,同时又比干法和其他半干法的去除率和吸收剂的利用率高。此外 ,对吸收剂研究结果表明 ,石灰石的脱硫效率虽然不及石灰 ,但是由于PPSB中吸收剂的停留时间长 ,气、固、液三相接触好的特点以及可以对石灰石进行研磨 ,因此 ,利用石灰石作吸收剂的PPSB完全可以达到理想的脱硫效率 ,同时也可以保持较好的经济性。但是 ,目前还没有大规模的试验和应用。所以PPSB是一项十分值得进一步开发和应用的烟气脱硫新技术。  相似文献   

12.
Flue gas desulfurization: the state of the art   总被引:7,自引:0,他引:7  
Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers. Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications. The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of approximately 90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%. Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to approximately 250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

13.
利用垃圾渗滤液中较高的碱度吸收二氧化硫是垃圾渗滤液湿法烟气脱硫工艺的第一阶段。试验证明 ,垃圾渗滤液可高效吸收二氧化硫 (去除率可达 90 %以上 ) ;同时垃圾渗滤液中氨氮浓度由 133mmol L降至 78mmol L。实验结果证实了所建立的垃圾渗滤液烟气脱硫体系的互补性  相似文献   

14.
多级雾化超重力旋转床是一种新型的强化传质设备 ,适合于大流量的废气处理。本文选择NaOH Ca(OH) 2双碱法烟气脱硫工艺进行了实验研究 ,考察了再生液的PH0 值、液气比及气体中的SO2 初始浓度等对脱硫率的影响  相似文献   

15.
烟道喷射石灰(石)烟气脱硫技术综述   总被引:1,自引:0,他引:1  
本文介绍了近几年发展起来的一种简单、中效、适合燃烧中低硫煤的工业锅炉的烟气脱硫技术———烟道喷射石灰 (石 )烟气脱硫技术。从湿法、干法、半干法 3种工艺对烟道喷射烟气脱硫进行了介绍 ,并提出新型脱硫吸收剂是提高烟道脱硫效率的可行方法。最后指出烟道脱硫今后的研究方向  相似文献   

16.
Long XL  Xiao WD  Yuan WK 《Chemosphere》2005,59(6):811-817
An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.  相似文献   

17.
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.  相似文献   

18.
ABSTRACT

Coal-fired electricity-generating plants may use SO2 scrubbers to meet the requirements of Phase II of the Acid Rain SO2 Reduction Program. Additionally, the use of scrubbers can result in reduction of Hg and other emissions from combustion sources. It is timely, therefore, to examine the current status of SO2 scrubbing technologies. This paper presents a comprehensive review of the state of the art in flue gas desulfurization (FGD) technologies for coal-fired boilers.

Data on worldwide FGD applications reveal that wet FGD technologies, and specifically wet limestone FGD, have been predominantly selected over other FGD technologies. However, lime spray drying (LSD) is being used at the majority of the plants employing dry FGD technologies. Additional review of the U.S. FGD technology applications that began operation in 1991 through 1995 reveals that FGD processes of choice recently in the United States have been wet limestone FGD, magnesium-enhanced lime (MEL), and LSD. Further, of the wet limestone processes, limestone forced oxidation (LSFO) has been used most often in recent applications.

The SO2 removal performance of scrubbers has been reviewed. Data reflect that most wet limestone and LSD installations appear to be capable of ~90% SO2 removal. Advanced, state-of-the-art wet scrubbers can provide SO2 removal in excess of 95%.

Costs associated with state-of-the-art applications of LSFO, MEL, and LSD technologies have been analyzed with appropriate cost models. Analyses indicate that the capital cost of an LSD system is lower than those of same capacity LSFO and MEL systems, reflective of the relatively less complex hardware used in LSD. Analyses also reflect that, based on total annualized cost and SO2 removal requirements: (1) plants up to ~250 MWe in size and firing low- to medium-sulfur coals (i.e., coals with a sulfur content of 2% or lower) may use LSD; and (2) plants larger than 250 MWe and firing medium- to high-sulfur coals (i.e., coals with a sulfur content of 2% or higher) may use either LSFO or MEL.  相似文献   

19.
The utility and industrial sectors continue to come under pressure from both national and local regulatory groups to reduce sulfur dioxide emissions. With a trend in the utility industry for life extension, retrofit technologies are likely to play an important role in any SO2 emission reduction strategy. Potential retrofit technologies include, singly and in combination: coal switching or cleaning, wet or dry FGD, conversion to fluidized bed, and dry sorbent injection. The diversity within the utility industry in terms of unit size, unit age, fuel use, financial base, and geographic location dictates the need for a variety of technologies to address SO2 emission control. Dry injection processes involving the injection of dry powders into either the furnace or post-furnace region offer the potential for low capital cost retrofitable technologies. However, compared to wet FGD processes, the dry calcium based processes will likely have lower SO2 removal efficiencies and may pose more plant-wide integration issues that need to be addressed from both an applications and R&D perspective.

This paper provides a critical assessment of dry injection technologies, in two parts. Part 1 focuses on sorbent processes and science. An assessment of the different dry sorbent processes and the effect of process parameters is provided. Emphasis is placed on process limitations and potential avenues to enhance SO2 removal. Part 2 will deal with applications of the technology, addressing cost, scale-up, and integration issues.

Much of the data included in this paper was presented at the 1986 Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, sponsored by the Electric Power Research Institute and the Environmental Protection Agency and held in June 1986. This paper provides both an overview and an evaluation of the technology, based largely on our analysis of the data and interpretations discussed at this symposium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号