首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

To date, heavyweight concretes have been produced from various heavy aggregates as radiation insulation materials, and their gamma ray absorption levels have been investigated. Many of the studies have used heavy aggregates instead of cement or coarse aggregates from composite material components. The present study prepared lightweight concretes using copper mine tailings, clay brick dust, and fly ash instead of fine aggregates. Some mechanical tests (density, compressive strength, and ultrasonic pulse velocity) were performed on composite blocks with dimensions of 5*5*5 cm, and radiation interaction parameters [linear absorption coefficient (cm−1), mass attenuation coefficient (cm2/gr), HVL (half-value layer) (cm), MFP (cm), and permeability (%)] were measured. Radiation interaction parameters were obtained using a HPGe gamma detector. Radiation measurements were performed at five different photon energies: 583 keV (133Ba), 609 keV (133Ba), 662 keV (137Cs), 911 keV (133Ba), 1173 keV (60Co), and 1332 keV (60Co). Additionally, the compressive strength and UPV values of composite materials were associated with their gamma ray permeability. Tests revealed that samples with the addition of copper mine tailings yielded the best energy absorption at all energy levels and that absorption decreased as the energy level increased. For example, with the increasing of the energy level, mass attenuation coefficients decreased. The highest mass attenuation coefficients were obtained as 0.128 cm2/g at an energy level of 583 keV in composites produced from copper mine tailings. On the other hand, it was measured at the same energy level as 0.069 cm2/g (a 46% decrease) in the composites produced with fly ash. In addition, it was observed that fly ash used as a fine aggregate did not have a significant effect on mass attenuation coefficient and could be used as a gamma shield if the material thickness was increased to an average of 14 cm. This study revealed that tailings materials could be used as radiation shields. This study also demonstrated that not using heavy aggregates and producing lightweight concrete in radiation shield production significantly reduced shield production cost.

  相似文献   

2.
通过将磨细的废砖粉取代水泥制作胶砂试件,并测其抗折、抗压强度值来研究废砖粉的潜在活性,并在此基础上,进一步研究了石灰对废砖粉活性的激发作用.结果表明:磨细的废砖粉具有潜在活性,且粒径越小,活性越大;在一定掺量时,石灰可进一步激发废砖粉的活性.  相似文献   

3.
Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.  相似文献   

4.
Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values.  相似文献   

5.
To prevent acid mine drainage arising from oxygen and water penetration of sulphide-rich mine tailings, the tailings are covered with layers of dry sealing material. Plant roots have a great ability to penetrate dense materials, and if the roots are able to penetrate the sealing layer of a tailings deposit, its oxygen-shielding properties could be reduced. The objective of this study was to evaluate whether plant roots are able to penetrate sealing layers covering mine tailings deposits. Root penetration into layers of various sealing materials, such as clayey moraine (clay, 8-10%; silt, 22-37%; sand, 37-55%; gravel, 15-18%), moraine (unspecified), 6-mm bentonite (kaolin clay) fabric, lime and clay, Cefyll (mixture of pulverized coal fly ash, cement and water) and a mixture containing biosludge (30-35%) and bioashes (65-70%), was investigated. In the field, roots were studied by digging trenches alongside vegetation growing in 3- and 10-year-old mine sites. In the greenhouse root growth of Betula pendula, Pinus sylvestris, Poa pratensis and Salix viminalis were studied in compartments where the plants had been growing for 22 months. The results from the field experiment indicated that roots are able to penetrate both deep down in the cover layer (1.7 m) and also into the sealing layers of various materials, and even to penetrate hard Cefyll. The addition of nutrients in the top cover reduced deep root growth and thereby also penetration through the sealing layer. Low hydraulic conductivity of the sealing layer or a thick cover layer had less effect on root penetration. In the greenhouse experiment roots did not penetrate the thin bentonite fabric, due to low pH (2.1-2.7) that was created from the underlying weathered mine tailings. The clayey moraine was penetrated by all species used in the greenhouse experiment; Pinus sylvestris had the greatest ability to penetrate. To prevent root penetration of the other sealing layer, a suitable condition for the plants should be created in the upper part of the cover layer, namely a sufficient amount of plant nutrients. However, to define such a condition is difficult since different plant species have different requirements.  相似文献   

6.
In this study, colemanite was recovered from tailings produced by the Kestelek (Turkey) Processing Plant by magnetic separation. Magnetic susceptibility measurements revealed that colemanite is diamagnetic in character whereas gangue minerals are weakly paramagnetic, apparently due to the presence of the iron-bearing silicates such as smectite and, to a less extent, illite. Three-stage magnetic separation tests were performed on the size fractions coarser than 75 microm produced from the tailings (31.52% B(2)O(3)) using a high-intensity permanent magnetic separator. Under the test conditions a colemanite concentrate with a B(2)O(3) content of 43.74% at 95.06% recovery was shown to be produced from the tailings. The mineralogical composition of the tailings appears to allow the removal of gangue minerals by magnetic separation and hence the production of a concentrate of commercial grade.  相似文献   

7.
The cycling of iron and sulfur in mine tailings depends on various chemical and microbial reactions. The present study was undertaken in order to assess the role played by populations of sulfate-reducing bacteria (SRB) on the fate of Fe and SO4 2- in Cu–Zn and Au tailings. Samples were taken along a 50-cm deep profile at all sites and analyzed for SRB populations, solid-phase mineralogy and porewater geochemistry. Results indicated that the Cu–Zn tailings were highly oxidized near the surface, as shown by the very low pH, high redox potential, large concentrations of soluble Cu, Zn and sulfate in the porewaters, and the depletion of pyrite. On the other hand, Au tailings were more pH neutral, slightly anoxic, and showed low concentrations of Fe and SO4 2- in the porewaters and very little pyrite oxidation. SRB populations in the Cu–Zn tailings increased with depth, just below the oxic/anoxic interface and were linked to a decline of sulfate and DOC concentrations around the same depths. However, large concentrations of dissolved Fe were also observed around the same depth intervals. Our results suggest that SRB could be involved in sulfate reduction in the Cu–Zn tailings, because the solubility of sulfate was not controlled by the precipitation of sulfate-rich minerals. However, the presence of soluble Fe in the reduced portion of the tailings was also indicative of the presence of iron reducing bacteria (IRB). These bacteria were not enumerated in the present study, but their co-occurrence with SRB has been reported in the past in similar mining environments. The decline of sulfate and the release of soluble iron into the porewaters were also paralleled by a pH increase and the generation of alkalinity. In the Au tailings, SRB populations were generally constant throughout the depth profile and could not be ascribed to sulfate reduction in the porewaters. The solubilities of sulfate and iron in these tailings were partially controlled by jarosite and Fe-oxide minerals. It is then clear that SRB populations could be recovered from various mining sites, but their activity cannot be ascertained based on microbial enumeration and geochemical data.  相似文献   

8.
Mill tailings dumps at Kolar Gold Fields, Karnataka, are creating environmental problems. One of the solutions to these problems is to use the mill tailings for some useful purpose. This study examined the possibility of making bricks from the mill tailings with some additives in laboratory experiments. Samples of the mill tailings and the additives were analysed for particle size distribution, Atterberg limits and specific gravity. The plasticity index of the mill tailings being zero, they could not be used directly for making bricks. Therefore some additives that had plasticity or binding properties were mixed with the mill tailings. Ordinary Portland cement, black cotton soils and red soils were selected as additives. Each of the additives was mixed separately with the mill tailings in different proportions by weight and a large number of bricks were prepared using metallic moulds. The bricks were termed as cement-tailings bricks or soil-tailings bricks, depending on the additives used. The cement-tailings bricks were cured for different periods and their corresponding compressive strengths were determined. The bricks with 20% of cement and 14 days of curing were found to be suitable. The soil-tailings bricks were sun-dried and then fired in a furnace at different temperatures. The quality of bricks was assessed in terms of linear shrinkage, water absorption and compressive strength. The cost analysis revealed that cement-tailings bricks would be uneconomical whereas the soil-tailings bricks would be very economical.  相似文献   

9.
In the present work, the feasibility of using sludge generated in wastewater treatment plants of textile industry as a partial replacement for clay in the conventional brick manufacturing process is examined. Physico-chemical properties of the sludge and clay were studied. The characteristics of bricks with replacement of sludge (0–50 %) with an increment of 3 % were determined. All the brick samples satisfied the requirements of Indian Standards norms in terms of weight loss on ignition. The bricks with sludge up to 15 % satisfied the prescribed norms for compressive strength and water absorption. Results also showed that the brick weight loss on ignition was mainly attributed to the organic matter content in the sludge being burnt off during the firing process. The characteristics of bricks such as efflorescence, density and weight loss on ignition for bricks with replacement of clayey soil with textile sludge up to 15 % also satisfied the requirements of the Indian Standard. Thus, textile sludge up to 15 % can be effectively added to make brick material.  相似文献   

10.
The arsenic–iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic–iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge–clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay–sludge bricks was found to be 6% (safely maximum) by weight.  相似文献   

11.
半干法脱硫灰生产蒸压砖技术研究   总被引:1,自引:0,他引:1  
国网能源开发有限公司焦作电厂针对半干法脱硫灰难以利用的现状,提出了用脱硫灰生产蒸压砖技术方案,该方案可完全利用脱硫灰中的CaO、CaCO3、Ca(OH)2、CaSO3和CaSO4。介绍了脱硫灰的理化特性及脱硫灰蒸养砖的工业化试验,实现了半干法脱硫灰制蒸压砖工业化生产的综合利用。  相似文献   

12.
Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant sludge was dried and ground, and the bottom ash was subjected to magnetic separation to remove ferrous metals. Both sludge and bottom ash were ground and sieved to a size of <2mm. Different contents of water treatment sludge (70-95% by weight) were mixed with bottom ash and the blocks were molded under a pressure of 110 kg/cm2. Thereafter, the molded blocks were sintered at temperatures of 900-1200 degrees C for 60-360 min. The compressive strength, permeability and water absorption rate of the sintered brick were examined and compared to relevant standards. The amount of bottom ash added in the mixture with water treatment sludge affects both the compressive strength and the permeability of the sintered bricks. The two effects are antonymous as higher bottom ash content will develop a beehive configuration and have more voids in the brick. It is concluded that a 20% weight content of bottom ash under a sintering condition of 1150 degrees C for 360 min can generate a brick with a compressive strength of 256 kg/cm2, a water absorption ratio of 2.78% and a permeability of 0.016 cm/s.  相似文献   

13.
将废粘土砖加工成粗细骨料,用于配制全废砖再生轻骨料混凝土.检测结果表明:所用废砖粗细骨料属轻骨料范畴,但其吸水率较大,且细骨料级配不良.试验表明:本试验配合比体系中,净水灰比为0.42,体积砂率为50%时最佳;以全废砖配制的再生砖轻骨料混凝土的强度发展规律与普通轻骨料混凝土类似,均有随水泥用量提高而强度提高的趋势,但随着所配制的混凝土强度等级的提高,再生轻骨料混凝土的强度提高趋势下降.以全废砖为骨料适合配制强度等级LC30及以下的再生轻骨料混凝土.  相似文献   

14.
In the present paper, the potential use of lignite fly ash in the control of acid generation from sulphidic tailings disposed of at Lavrion, Greece was studied. Long-term laboratory column kinetic tests were performed on tailings containing 27% S, which were homogeneously mixed with various amounts of fly ash, ranging from 10 to 63% w/w. The drainage quality of the columns was monitored over a test period of 600 days. Chemical and mineralogical characterisation of column solid residues was performed after a 270-day test period. The hydraulic conductivity of the mixtures was also measured to evaluate the potential of fly ash to form a low permeability layer. Based on the results, the addition of fly ash to sulphidic tailings, even at the lower amount, increased the pH of the drainage at values of 8.6-10.0 and decreased the dissolved concentrations of contaminants, mainly Zn and Mn, to values that meet the European regulatory limits for potable water. Higher fly ash addition to tailings, at amounts of 31 and 63% w/w also reduced the water permeability of material from 1.2 x 10(-5) cm/sec to 3 x 10(-7) and 2.5 x 10(-8) m/s, respectively.  相似文献   

15.
India ranks as the sixth largest producer of iron ore in the world. The current practice of washing iron ore in India generates as high as 18 million tonnes of tailings per year. These tailings are stored in massive ponds and pose environmental hazards. Safe disposal or utilisation of these materials thus remains a challenging task for the iron ore industry in India. The present paper describes a new development in managing these tailings by converting them into value added products such as ceramic floor and wall tiles for building application. These tiles have high strength and hardness compared to conventional tiles and conform to most of the EN standards. Energy economy and lower production costs are some other benefits.  相似文献   

16.
Alkaline tailings from a salt work and a soda plant have been pumped into the southernmost part of Traunsee at Ebensee for many decades. A survey in 1981 showed an accumulation of more than 3 × 106 m3 alkaline mud in the Bay of Ebensee and the existence of slumping structures and turbidites in the profundal zone of the lake. A new survey of the industrial tailings has been performed in 1999. Compared to the earlier survey, the accumulation in the Bay of Ebensee has grown to >4 × 106 m3, which suggests an average yearly input of 90 000 m3. Slumping structures and turbidites document the unstable situation of the tailings near the waste inlet. The lake area occasionally affected by the turbidity currents in the profundal zone has increased to 19%. Within the central profundal area these tailings reach <1 m in thickness.  相似文献   

17.
Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.  相似文献   

18.
Boron has been found in high concentrations in leachates from landfills located throughout Japan. However, the source(s) of boron in the leachates, i.e., what kind of waste(s) releases this element into the leachate, has not been clarified. In this study, boron concentrations in leachates from 48 industrial landfills were evaluated, in relation to the categories of waste constituting the landfill in each of the sites, by multiple regression analysis. The multiple regression analyses were carried out using the log-transformed boron concentration as a dependent variable and each of 19 categories of industrial waste (according to the Japanese Waste Disposal and Public Cleansing Law) as independent variables. Stepwise variable selection was employed in the analyses. Although the significant variable(s) selected varied according to the data sets analyzed (viz., data sets from least controlled landfill sites, from controlled landfill sites, and from both), cinders, slag, and waste plastics emerged as wastes with positive partial regression coefficients that significantly explained the boron levels in the leachates. These results indicated that cinders, slag, and waste plastics were the sources of high concentrations of boron in the leachates. The results of the present exploratory statistical analyses warrant a systematic survey of the boron contents of, and leachability from, cinders, slag, and waste plastics. Received: January 17, 2000 / Accepted: July 24, 2000  相似文献   

19.
While the cathode ray tube (CRT) funnel containing lead could be transported to a smelting facility to recover lead, which could be an available option in domestic, a proper technology to recycle a CRT panel must be developed. Thus, it was suggested that CRT panel glass be used as aggregates of concrete blocks and clay bricks. Samples of blocks and bricks were fabricated with CRT powders and tested to measure their strength and absorption rate to determine their qualities, and environmental soundness was determined by measuring the leaching rate of hazardous metals. For concrete blocks, CRT panel glass powders incorporated as aggregates up to 40 % replacing stone powder was proposed as the proper condition for manufacturing blocks. Around 2 % of CRT panel incorporated into clay brick to substitute Kaoline was suggested to fabricate the best quality of clay brick. Results of leaching test met the criteria with much less concentration of hazardous metals, even lead compound containing in the CRT funnel. To conclude, the use of CRT panel powder after crushing it to the proper size as an aggregate of concrete blocks or clay bricks could be one of the appropriate alternatives to recycle for CRT glass waste being generated drastically in a short term.  相似文献   

20.
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号