首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption.  相似文献   

2.
3.

Purpose

The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes.

Methods

A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75?×?103 c.f.u./ml) was exposed to 1, 2, 5, 10 and 20?ppb of silver ions in 100?ml of autoclaved tap water for 60?min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5?ppb) and contact time of 30?min.

Results

The maximum bactericidal activity (100%) was observed at 20?ppb of silver ion concentration indicating total disinfection after 20?min while minimum bactericidal activity (25%) was observed after 10?min at 01?ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10?ppb of silver ions after 60, 50 and 40?min, respectively. Bactericidal activity at pH?5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively.

Conclusion

The findings of this study revealed that very low concentrations of silver ions at pH?8?C9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.  相似文献   

4.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

5.

Copper ions were first adsorbed by zeolite 4A synthesized from bauxite tailings, the desorption of Cu(II) using Na2EDTA solutions was performed, and the recycling of zeolite 4A in adsorption and desorption was systematically investigated. It was observed that the Cu(II) removal efficiency was directly dependent on the initial pH value. The maximum removal efficiency of Cu(II) was 96.2% with zeolite 4A when the initial pH value was 5.0. Cu(II) was completely absorbed in the first 30 min. It was also observed that the desorption efficiency and zeolite recovery were highly dependent on the initial pH and concentration of Na2EDTA in the solution. The desorption efficiency and percent of zeolite recovered were 73.6 and 85.9%, respectively, when the Na2EDTA solution concentration was 0.05 mol L?1 and the pH value was 8. The recovered zeolites were pure single phase and highly crystalline. After 3 cycles, the removal efficiency of Cu(II) was as high as 78.9%, and the zeolite recovery was 46.9%, indicating that the recovered zeolites have good adsorption capacity and can repeatedly absorb Cu(II).

  相似文献   

6.

Efficient abatement of an iodinated X-ray contrast media iohexol by an emerging sulfite autoxidation advanced oxidation process is demonstrated, which is based on transition metal ion–catalyzed autoxidation of sulfite to form active oxidizing species. The efficacy of the combination of sulfite and transition metal ions (Ag(I), Mn(II), Co(II), Fe(II), Cu(II), Fe(III), or Ce(III)) was tested for iohexol abatement. Co(II) and Cu(II) are proven to show more pronounced catalytic activity than other metals at pH 8.0. According to the quenching studies, sulfate radical (SO4??) is identified to be the primary species for oxidation of iohexol. Increasing dosages of metal ion or sulfite and higher pH values are favorable for iohexol abatement. Inhibition of iohexol abatement is observed in the absence of dissolved oxygen, which is vital for the production of SO5?? and subsequent formation of SO4??. Overall, activation of sulfite to produce reactive radicals with extremely low Co(II) or Cu(II) concentrations (in the range of μg L?1) in circumneutral conditions is confirmed, which offers a potential SO4??-based advanced oxidation process in treatment of aquatic organic contaminants.

  相似文献   

7.
This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH = 6 the metal removal sequence obtained by the UF system was Pb(II) > Cu(II) > Zn(II) > Ni(II) in mg g−1 with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds. At this pH, zinc and nickel adsorption onto minerals was significant, particularly when bentonite and vermiculite were employed as adsorbents. Metal adsorption onto zeolite and bentonite followed the sequence Zn(II) > Ni(II) > Cu(II) > Pb(II), while for vermiculite the sequence was Ni(II) > Zn(II) > Cu(II) > Pb(II) in mg g−1. The low amount of Pb(II) and Cu(II) adsorbed by minerals was attributed to the low available lead and copper concentration. At pH = 9 the adoption of UF could effectively reduce heavy metals to very low levels. The same was observed at pH = 8, provided that minerals were added. The prevailing metal removal process was the formation of precipitates/complexes with wastewater compounds.  相似文献   

8.
The aim of our study is to determine microbial contamination, antibacterial and antioxidant activities of 14 pollen samples of Corylus avellana collected from different locations in Slovakia. Microbiological analysis was carried out in two steps: microbiological assays and studies of antibacterial activity of pollen extracts. The antimicrobial properties of pollen extracts were carried out with the disc-diffusion method. Methanol (70%), ethanol (70%) and distilled water were used for pollen extracts. Five strains of bacteria such as gram-negative (Salmonella enterica subsp. enterica CCM 3807, Escherichia coli CCM 2024, and Yersinia enterocolitica CCM 5671) and gram-positive (Staphylococcus aureus CCM 2461 and Bacillus thuringiensis CCM 19T) were tested. Antioxidant activity of pollen extracts was determined by the DPPH method. Bacterial analysis includes the determination of the total bacterial count ranged from 4.08 to 4.61 log CFU g?1, mesophilic aerobic bacteria ranged from 3.40 to 4.89 log CFU g?1, mesophilic anaerobic bacteria ranged from 3.20 to 4.52 log CFU g?1, coliform bacteria ranged from 3.30 to 4.55 log CFU g?1, yeasts and filamentous fungi ranged from 3.00 to 3.56 log CFU g?1. Microscopic filamentous fungi Aspergillus spp., Alternaria spp., Penicillium spp., Cladosporium spp., Rhizopus spp., and Paecylomyces spp. were isolated from hazelnut pollen. Yersinia enterocolitica was the most sensitive strain among ethanolic and methanolic pollen hazelnut extracts. Staphylococcus aureus was the most sensitive strain against aqueous hazelnut pollen extracts. We determined the following sensitivity against ethanol pollen extracts respectively: Yersinia enterocolitica?>?Salmonella enterica?>?Staphylococcus aureus?>?Bacillus thuringiensis?>?Escherichia coli. Methanol pollen extracts had shown following sensitivity: Yersinia enterocolitica?>?Salmonella enterica?>?Escherichia coli?>?Staphylococcus aureus?>?Bacillus thuringiensis. Aqueous extracts had shown the following sensitivity: Staphylococcus aureus?>?Salmonella enterica?>?Escherichia coli?>?Bacillus thuringiensis?>?Yersinia enterocolitica. Hazelnut pollen extracts have over 82% antioxidant capacity in samples from non-urban zones. An elevated level of antioxidant potential in the pollen is determined by its biological properties conditioned by biologically active substances. DPPH method allowed characterizing pollen as a source of antioxidants.  相似文献   

9.
Metal ion removal from water by sorption on paper mill sludge   总被引:5,自引:0,他引:5  
Chromatographic columns packed with paper mill sludge are employed for metal ion recovery from water. The breakthrough curves show that cadmium, copper, lead and silver are removed from acid solutions (pH 2, 4); the affinity series is Pb(II)>Cu(II)>Ag(I)>Cd(II). Both the amount of metal retained and the metal-matrix interaction are pH dependent; the sorptive capacity increases with increasing pH. When the metals are present together at the same initial concentrations a competition among the different ions occurs although the affinity order remains unchanged. In metal recovery from the paper mill sludge column, the total amount of the cadmium and copper is displaced by HCl 1.0 M, 65% of the lead by HCl 0.1 M and 75% of the silver by HNO(3) 0.1 M. More than 95% of copper and lead and less than 20% of cadmium were recovered with HCl 0.1 M when the metals were present at the same time.  相似文献   

10.
Several environmental media in Austria were monitored for artificial radionuclides released during the Fukushima nuclear accident. Air (up to 1.2 mBq/m3 particulate 131I) and rainwater (up to 5.2 Bq/L 131I) proved to be the media best suited for the environmental monitoring, allowing also a temporal resolution of the activity levels. Significant regional differences in the wet deposition of 131I with rain could be observed within the city of Vienna during the arrival of the contaminated air masses. Forward-trajectory analysis supported the hypothesis that the contaminated air masses coming from the northwest changed direction to northeast over Northern Austria, leading to a strong activity concentration gradient over Vienna. In the course of the environmental monitoring of the Fukushima releases, this phenomenon—significant differences of 131I activity concentrations in rainwater on a narrow local scale (8.1 km)—appears to be unique. Vegetation (grass) was contaminated with 131I and/or 137Cs at a low level. Soil (up to 22 Bq/kg 137Cs) was only affected by previous releases (nuclear weapon tests, Chernobyl). Here, also significant local differences can be observed due to different deposition rates during the Chernobyl accident. The effective ecological half-lives of 137Cs in soil were calculated for four locations in Austria. They range from 7 to 30 years. No Austrian sample investigated herein exceeded the detection limit for 134Cs; hence, the Fukushima nuclear accident did not contribute significantly to the total radiocesium inventory in Austrian environmental media. The levels of detected radioactivity were of no concern for public health.  相似文献   

11.
Sun J  Hu J  Peng H  Shi J  Dong Z 《Chemosphere》2012,87(1):37-42
Increasing antibacterial resistance and pathogenicity in the environment is of growing concern due to its potential human risk. In the present study, 236 Escherichia coli isolates were collected from Wenyu River in China on drugless (48 isolates) and quinolone-containing plates (189 isolates). Their minimum inhibitory concentrations (MICs) were determined ranging from 0.125 μg mL−1 to 128 μg mL−1. Mutation points related to fluoroquinolone resistance were observed at S83 to L and D87 to N or Y in the GyrA subunit and S80 to R or I and E84 to G in the ParC subunit. Generally, MICs of LEV and GAT are dependent on the patterns of these mutation points. The profile with three mutation points was related to LEV-resistant E. coli isolates, and the (S83L, D87N + S80I) mutation profile was most prevalent (65.7%) in LEV-resistant isolates, while a large proportion of isolates, even those with three mutation points, were susceptive to GAT. The incidence of virulence factors in LEV-resistant isolates (44.7%, 59/132) was much higher than in nonresistant isolates (23.1%, 24/104) (χ2 = 11.925, 1° of freedom, p < 0.001) indicating that fluoroquinolone-resistant E. coli would pose a potential risk. A similar distribution was also found in isolates resistant to GAT (χ2 = 7.843, 1° of freedom, = 0.0079).  相似文献   

12.
Cui  Limeng  Wu  Zhuona  Han  Peng  Taira  Yasuyuki  Wang  Huan  Meng  Qinghua  Feng  Zechen  Zhai  Shuguang  Yu  Jun  Zhu  Weijie  Kong  Yuxia  Wang  Hongfang  Zhang  Hong  Bai  Bin  Lou  Yun  Ma  Yongzhong 《Environmental science and pollution research international》2020,27(7):7005-7014

The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 μg/m3, with a median of 133.97 μg/m3. The order for the mean concentrations of heavy metals, known as hazardous air pollutants (HAPs), was as follows: Mn > Pb > As > Cr > Ni > Se > Cd > Co > Sb > Hg > Be; Non-Designated HAPs Metals: Ca > Fe > Mg > Al > K > Na > Zn > P > Ba > Ti > Cu > Sr > B > Sn > I > V > Rb > Ce > Mo > Cs > Th > Ag > U > Pt. The median concentration of As was higher than China air quality standard (6 ng/m3). The gross α and β concentration levels in aerosols were (1.84?±?1.59) mBg/m3 and (1.15?±?0.85) mBg/m3, respectively. The enrichment factor values of Cu, Ba, B, Ce, Tl, Cs, Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and Ag were higher than 10, which indicated enriched results from anthropogenic sources. Pb, As, and Cd are considered to originate from multiple sources; fireworks released Ba during China spring festival; Fe, Ce, and Cs may come from stable emissions such as industrial gases. The health risks from anthropogenic metals via inhalation, ingestion, and dermal pathway were estimated on the basis of health quotient as well as the results indicated that children faced the higher risk than adults during the research period. For adults, the health risk posed by heavy metals in atmospheric particles was below the acceptable level.

  相似文献   

13.
Nano zerovalent iron (nZVI) is an effective remediant for removing various organic and inorganic pollutants from contaminated water sources. Batch experiments were conducted to characterize the nZVI surface and to investigate the effects of various solution properties such as pH, initial cadmium concentration, sorbent dosage, ionic strength, and competitive ions on cadmium removal by nZVI. Energy-dispersive X-ray and X-ray photoelectron spectroscopy results confirmed removal of Cd2+ ions by nZVI through adsorption. Cd2+ adsorption decreased in the presence of competitive cations in the order: Zn2+?>?Co2+?>?Mg2+?>?Mn2+?=?Cu2+?>?Ca2+?>?Na2+?=?K+. Higher concentrations of Cl? significantly decreased the adsorption. Cadmium removal increased with solution pH and reached a maximum at pH 8.0. The effects of various solution properties indicated Cd2+ adsorption on nZVI to be a chemisorption (inner-sphere complexation) process. The three surface complexation models (diffuse layer model, constant capacitance model, and triple layer model) fitted well to the adsorption edge experimental data indicating the formation of nZVI–Cd bidentate inner-sphere surface complexes. Our results suggest that nZVI can be effectively used for the removal of cadmium from contaminated water sources with varying chemical conditions.  相似文献   

14.
Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH?>?12 and high electrical conductivities (between 16.01 and 27.27 dS?m?1), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS?m?1. X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6 %), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94 %, As(V) >96 % and Cr(VI) between 11 and 30 % for shell ash; Hg(II) >98 %, As(V) >88 % and Cr(VI) between 30 and 88 % for the waste mixture. Hg and As desorption was <5 % for both shell ash and the waste mixture, while Cr desorption was between 92 and 45 % for shell ash, and between 19 and 0 % for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.  相似文献   

15.
In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as “thermal co-reduction” approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.  相似文献   

16.
The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV–visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7?×?104 CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.  相似文献   

17.
Solidification/stabilization (S/S) of sediments is frequently used to treat contaminants in dredged sediments. In this study, sediment collected from the Pearl River Delta (China) was solidified/stabilized with three different kinds of functional materials: cement, lime and bentonite. Lime primarily acted via induced increases in pH, while cements stabilization occurred through their silicate-based systems and the main function of bentonite was adsorption. The speciation and leaching behaviors of specific heavy metals before and after S/S were analyzed and the results showed that the residual speciation of Cd, Cr, Ni, Pb and Zn increased in all treatments except for Cu, as the exchangeable speciation, carbonate-bound speciation and Fe-Mn-oxide-bound speciation of Cu (all of which could be stabilized) were less than 2 % of the total amount. Pb leaching only decreased when pH increased, while the mobility of Cr and Ni only decreased in response to the silicate-based systems. The leached portion of the Fe-Mn-oxide-bound speciation followed the order Zn?>?Cu?>?Ni/Cd?>?Pb?>?Cr. The leached portion of organic-matter-bound species was less than 4 % for Cd, Cr, Ni and Pb, but 35.1 % and 20.6 % for Cu and Zn, respectively.  相似文献   

18.

This work describes the design of novel Cu(II) complexes and their application in the photocatalytic degradation of methylene blue (MB). The same photocatalyst exhibits antibacterial activity against Escherichia coli (gram-negative) and Bacillus circulans (gram-positive). The characterisation of the photocatalysts has been done by several up-to-date physical methods. The rationale behind the photocatalysts’ beneficial intervention is discussed in this study. Statistical analysis of the degradation of MB is done using a one-way ANOVA, and the significance of means is determined by a multiple comparison test using Turkey HSD. Also, the degradation of MB follows pseudo first-order kinetics with high correlation coefficient values (R2?>?0.95), making them useful as simple and low-cost organic dye degradation agents.

  相似文献   

19.
Abstract

Terbufos, t. sulfoxide and t. sulfone (5 μg ml‐1) were incubated in natural, sterilized natural and distilled water, with initial pH values of 8.8, 8.8 and 6.0, respectively, at 20°C. First‐order disappearance was observed for the three compounds. Rates in natural and sterilized water were similar indicating chemical degradation predominated. Terbufos disappeared rapidly (t½>=3 days) in all systems. T. sulfoxide and t. sulfone were more persistent in the natural (t½>=18–40 days) and distilled water (t½>=280–350 days). Adsorption data for the three compounds in four soil‐water systems showed the decreasing order of adsorption to be terbufos>>t. sulfoxide=t. sulfone. Desorption from soils fortified at 5 μg g‐1 with water was examined for 4 successive 18‐hr cycles. T. sulfoxide and t. sulfone were totally desorbed; terbufos was too unstable to study. The mobility of the compound in soil eluted with water was in the order, t. sulfoxide=t. sulfone>> terbufos, in agreement with adsorption‐desorption results. The octanol‐water partitioning coefficients for terbufos, t. sulfoxide and t. sulfone, at 23°C, were 3:30 x 10 , 164, and 302, respectively.  相似文献   

20.
Jong T  Parry DL 《Chemosphere》2005,60(2):254-265
An investigation was conducted to evaluate the stability or leachability of arsenic immobilized by microbial sulfate reduction. Anoxic solid-phase samples taken from a bioreactor previously used to treat metal and As contaminated water using sulfate reducing bacteria (SRB) were subjected to the toxicity characteristic leaching procedure (TCLP) and long-term column leaching tests. The results from TCLP experiments showed that the concentration of As leached from solid-phase sulfide material (SSM) samples after an 18 h extraction time was <300 microgl(-1), which is below the current maximum Australian TCLP leachate value for As, and thus would not be characterized as a hazardous waste. In terms of percent total As leached, this was equivalent to <8.5% for SSM samples initially containing 61.3 mgkg(-1) As. The levels of As extracted by the TCLP was found to be significantly lowered or underestimated in the presence of dissolved oxygen, with As concentrations increasing with decreasing headspace-to-leachant volume ratios. The concentration of As was also consistently higher in nitrogen purged extractions compared to those performed in air. This was attributed to the dissolution of Fe-sulfide precipitates and subsequent oxidation of Fe(II) ions and precipitation of ferric(hydr)oxides, resulting in the adsorption of soluble As and corresponding decrease in As concentrations. According to the experimental data, it is recommended that TCLP tests for As leachability should be performed at least in zero-headspace vessels or preferably under nitrogen to minimize the oxidation of Fe(II) to ferric(hydr)oxides. In long-term leaching studies (approximately 68 days), it was found that the low solubility of the SSM ensured that rate of release of As was relatively slow, and the resulting leachate concentrations of As were below the current Australian guideline concentration for arsenic in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号