首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.  相似文献   

2.
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C–H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.  相似文献   

3.
The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.  相似文献   

4.
Environmental Science and Pollution Research - Excess fluoride (F) ion of drinking water is a major problem in many areas of India and causes harmful effects such as dental and skeletal fluorosis....  相似文献   

5.
In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L d). At 60 degrees C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD(removed)/ L. A consecutive reaction kinetic model was used to simulate the data obtained from the sludge activity in the batch experiment. The mathematical model gave a good fit with the experimental results (R2 > 0.93). The slowest step was modeled to be the acidification step, with a rate constant between 0.015 and 0.083 hours(-1), while the rate constant for the methanogenic step was obtained to be between 0.218 and 0.361 hours(-1).  相似文献   

6.
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.  相似文献   

7.
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.  相似文献   

8.
C M Chen  M C Liu  M L Shih  S C Yu  C C Yeh  S T Lee  T Y Yang  S J Hung 《Chemosphere》2001,45(4-5):581-588
Bleached kraft pulp and paper mill effluents (BKMEs) are known to have adverse effects on aquatic organisms. One of the effects of BKMEs is its ability to induce cytochrome P4501A activity in exposed fish. 7-Ethoxyresorufin O-deethylase (EROD) activity is the most common biomarker used to measure the mixed-function monooxygenase activity. In this study, Tilapia were exposed to BKMEs using different exposure systems and their hepatic EROD activity, as well as liver/somatic index (LSI), were determined. In the Phase I study, Tilapia treated with betaNF and a whole (100%) BKME using a static, non-renewal system exhibited statistically significant EROD induction, but LSI values were not altered. In the Phase II study, fish were either caged in the mill's fishpond with the whole effluent passing through or cultured in tanks receiving 100% of the BKME continuously using a flow-through system in the laboratory. Their EROD activities were then compared with the non-exposed fish (control). The EROD activities in both groups of fish were elevated significantly with the greatest induction being observed in the field-exposed group. The LSI values in all of the field-exposed fish were significantly greater than the control Tilapia. The EROD assay was sensitive in detecting biological changes in fish exposed to the BKME. Further studies are warranted to better understand the impacts of BKMEs on aquatic organisms in Taiwan.  相似文献   

9.
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 2?/Al3 + mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5?×?105 to 20?×?105 Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r?=?0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L?1), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS–PDADMAC treatment (0.8 mg L?1?+?20 mg L?1). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.  相似文献   

10.
铝系混凝剂是应用最广泛的无机混凝剂,改善混凝剂中的铝形态可有效提高混凝效果,但其在净水过程中产生的余铝对人体健康及输水过程具有显著的影响。本文研究了氯化铝(AlCl3)和高聚十三铝(Al13) 2种混凝剂在处理黄河上游水源水时的混凝过程,结合出水中的溶解态及不同分子质量余铝含量、有机物紫外吸光度(UV254)、pH、浊度、有机物种类及含量和絮体特性的变化趋势,探究混凝剂中的铝形态对混凝过程的影响。结果表明,在实验投加量范围内,当Al13做混凝剂时,出水余铝质量浓度均低于0.2 mg·L−1。Al13具有较高的形态稳定性,在混凝过程中对出水pH影响较小。絮体粒度随混凝剂投加量的增加而增加,Al13投加量达到0.08 mmol·L−1时絮体粒度下降(强度因子由于静电排斥作用而下降)。在不同投加量下,使用AlCl3做混凝剂时出水余铝均高于Al13体系,且在不同投加量下AlCl3体系出水余铝中小于1 000 Da的余铝占比最大。Al13对富里酸和腐殖酸的去除效果优于AlCl3,且AlCl3在较高投加量下才能实现水中有机物的有效去除。  相似文献   

11.
Gao B  Yue Q 《Chemosphere》2005,61(4):579-584
A poly-aluminum-chloride-sulfate (PACS) was prepared at various experimental conditions. It was found that the coagulation performance of PACS in water treatment was affected by the PACS particle size distribution and zeta potential value. The experimental results indicated that the PACS particle size distribution and zeta potential value were highly influenced by SO(4)(2-)/Al(3+) molar ratio and bacicities (gamma,gamma=[OH]/[Al]) value. At a fixed gamma value of 2.0, the average PACS particle size increased from 25 to 80nm with the increase of SO(4)(2-)/Al(3+) ratio from 0 to 0.1. Further increase of the SO(4)(2-)/Al(3+) ratio resulted in acute increment particle size of PACS extremely, which can be attributed to its aggregation. At a fixed SO(4)(2-)/Al(3+) ratio of 0.0664, the largest average size of PACS occurred at gamma=2.0. It was also found that the zeta potential value of PACS was strongly influenced by the SO(4)(2-)/Al(3+) ratio, gamma value and pH of the aquatic solution. The zeta potential value of PACS increased with increasing of SO(4)(2-)/Al(3+) ratio. At a fixed SO(4)(2-)/Al(3+) ratio of 0.0664, PACS achieved greatest zeta potential value at gamma value of around 2.0. The maximum positive zeta potential value of PACS was found at pH5.3. At a fixed gamma value of 2.0 and SO(4)(2-)/Al(3+) ratio of 0.0664, the PACS achieved an optimum natural organic matter and turbidity removal efficiency.  相似文献   

12.
Chlorophenols and chloroguaiacols were quantified in juvenile chinook salmon captured near bleached kraft mills in the upper Fraser River in December 1987. Fish captured in April 1988 showed up to 55-fold induction of hepatic mixed function oxidase activity (EROD), and were contaminated with up to 370 ng·kg−1 of 2,3,7,8-TCDF and 68 ng·kg−1 of 2,3,7,8-TCDD. The implications for the survival of these salmon are uncertain.  相似文献   

13.
A dark and complex salified organic polymeric mixture, named lignimerin, was for the first time recovered from Kraft cellulose mill wastewater (KCMW) and characterized by chemical, spectroscopic and relative molecular weight (RMW) analysis. Lignimerin proved to be composed of polyphenols (57.00%), carbohydrates (22.26%) and proteins (7.42%). It also contained metals (6.93%), mainly Ca and, to much lower extent, Mg, Na, Al, Fe, K, Mn, Zn and Cu, bound to the carboxylate and phenate groups. The distribution of lignimerin RMW was assessed to be approximately between 1000 and 8600Da, as well as to consist of lignin and tannin, protein and polysaccharide moieties, strongly aggregated each other. H-lignimerin, its acid derivative, revealed a chemical composition and a RMW distribution very close to that of lignimerin, but a marked metal cations decreasing (1.60%) with respect to lignimerin (6.93%). The humic acid-like nature of both the polymers was assessed. Their potential use as bio-adsorbents of heavy metals is briefly discussed.  相似文献   

14.
Watson SB  Ridal J  Zaitlin B  Lo A 《Chemosphere》2003,51(8):765-773
Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.  相似文献   

15.
An analytical procedure has been developed for quantitatively measuring dibenzo-p-dioxin (DBD) and dibenzofuran (DBF) present at part-per-billion levels in paper mill defoamers and paper pulp using gas chromatography coupled with either low resolution mass spectrometry (GC-LRMS) or high resolution mass spectrometry (GC-HRMS).  相似文献   

16.
Paper mill effluents may contain polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are normally generated due to chlorinated bleaching of pulp and paper. We used the semipermeable membrane device (SPMD) to monitor PCDD/F levels upstream and downstream of a paper mill on the Androscoggin River, in Jay (ME). Following the 36 day deployment, SPMD dialysis and cleanup, the samples were analyzed by HRGC/HRMS. Total concentrations of PCDD/Fs in SPMDs (sum of all tetra-through octachlorinated congeners) ranged from 4.71 pg g(-1) to 26.26 pg g(-1). Five out of the targeted 17 toxic congeners were detected, including: 2,3,7,8-TCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,6,7,8-HpCDD and OCDD. Permeability reference compounds (PRCs) were used for in situ calibration of the SPMD sampling rate (Rs). In all sites, water concentrations were the highest for OCDD (0.081-0.103 pg l(-1)), and the lowest for 1,2,3,7,8-PeCDF (0.005-0.009 pg l(-1)). There was not a consistent pattern of upstream-downstream gradient in the PCDD/F levels. This suggested that processes other than the mill in Jay (multiple sources, river dynamics) governed the flux of PCDD/Fs in the sampling locations. The SPMD results were validated by comparison to other studies on the Androscoggin River and elsewhere, confirming the potential of the device as a useful monitoring technique for PCDD/Fs in large river systems.  相似文献   

17.
矿化垃圾反应床处理垃圾渗滤液出水中的水溶性有机物   总被引:1,自引:1,他引:1  
以矿化垃圾反应床处理垃圾渗滤液出水(以下简称尾水)为研究对象,采用国际上最常用的树脂联用法,对其进行梯度分离表征.研究结果表明,憎水性腐殖质对尾水COD和溶解性有机碳(DOC)的贡献分别为42.55%和45.12%,准亲水性物质对尾水中COD和DOC的贡献分别为34.89%和37.14%,憎水性腐殖质和准亲水性物质是尾水中水溶性有机物(DOM)的重要组成部分.近紫外区域吸光度分析发现,尾水中含有大量带共轭双键或苯环的有机物质,这些物质从尾水中去除后,尾水在近紫外区域的吸光度明显下降.分子量分布显示.尾水中DOM的分子量主要集中在2 000 u以下.元素分析和红外光谱结果显示,胡敏酸(HA)和富里酸(FA)带有苯环结构,存在醇羟基或酚羟基及羧酸官能团;准亲水性物质含有较多的羧酸官能团,另外存在一定置的羟基官能团,同时还可能含有三键和双键的结构.  相似文献   

18.
This paper presents an exploratory study of pulp mill bleaching effluent treatment by a biological-photocatalytic coupled system. A fungus, Trametes pubescens, immobilized on polyurethane foam was used to inoculate the biological pre-treatment system. The pretreated effluent was then exposed to a photocatalytic treatment in which two catalysts (TiO2 and ZnO) and two supports (aluminum foil and Luffa cylindrica) were tested. Catalyst characterization was carried out by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Information about crystalline structure, chemical composition, morphology, homogeneity and distribution on the support surface area was obtained. The overall biological-photocatalytic coupled system achieved degradation of 96% of initial total organic carbon (TOC), 97% of 2-chlorophenol (2-CP), 90% of 2,4-dichlorophenol (2,4-CP) and 99% of 2,4,6-trichlorophenol (2,4,6-TCP). This approach of synergistic coupling of T. pubescens and a semiconductor photocatalyst appears to be a viable alternative for the treatment of these non-biodegradable effluents.  相似文献   

19.
Environmental Science and Pollution Research - The interaction and the interplay of climate change with oil palm production in the Southeast Asia region are of serious concern. This particularly...  相似文献   

20.
铁混凝剂广泛应用于水处理领域,形成的絮体大小、形态和结晶度直接决定其混凝效果。然而小分子有机物对混凝的影响机制尚不清楚。本研究以FeSO4作为混凝剂,通过添加特定的小分子有机物(分子质量<1 000 Da)天冬氨酸,研究了天冬氨酸对絮体生长过程及其产物的影响。结果表明,天冬氨酸通过影响金属的水解和纳米颗粒的性质进而影响其混凝性能。在pH=7时,天冬氨酸的存在延缓了絮体的初始生长时间,但增大了絮凝体的最大粒径(从0.05 μm大小的碎片和小球状参杂的絮体变化至0.1 μm的褶皱状絮体)和磷酸盐的去除率。当添加0.4 mmol·L−1的天冬氨酸时,纤铁矿(γ-FeOOH)为絮体的主要成分,这可能少量的天冬氨酸存在时,体系中部分亚铁离子会被包裹, Fe(OH)2纳米颗粒由于铁化合物的饱和快速形成,随后作为晶核生长; Fe(OH)2纳米颗粒表面通过被氧化转化成三价铁,最终形成γ-FeOOH;当添加天冬氨酸大于0.4 mmol·L−1时,絮体的主要成分为四方纤铁矿(β-FeOOH),此时部分亚铁离子被完全包裹,剩余的亚铁离子被氧化成三价铁后形成β-FeOOH。经过天冬氨酸诱导后形成的絮体对磷酸盐的去除率均增加了1.57倍左右,处理后的磷酸盐浓度降低到了0.02 mg·L−1,且在添加1.5 mmol·L−1 天冬氨酸时絮体的尺寸最大,此时的絮体更加容易沉降分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号