首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

2.
The aqueous photodegradation of fluopyram was investigated under UV light (λ?≥?200 nm) and simulated sunlight irradiation (λ?≥?290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ?), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 ?, Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L?1 Fe (III) and 500 mg L?1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.  相似文献   

3.
The present investigation demonstrated pretreatment of lignocellulosic biomass rice straw using natural deep eutectic solvents (NADESs), and separation of high-quality lignin and holocellulose in a single step. Qualitative analysis of the NADES extract showed that the extracted lignin was of high purity (>90 %), and quantitative analysis showed that nearly 60?±?5 % (w/w) of total lignin was separated from the lignocellulosic biomass. Addition of 5.0 % (v/v) water during pretreatment significantly enhanced the total lignin extraction, and nearly 22?±?3 % more lignin was released from the residual biomass into the NADES extract. X-ray diffraction studies of the untreated and pretreated rice straw biomass showed that the crystallinity index ratio was marginally decreased from 46.4 to 44.3 %, indicating subtle structural alterations in the crystalline and amorphous regions of the cellulosic fractions. Thermogravimetric analysis of the pretreated biomass residue revealed a slightly higher T dcp (295 °C) compared to the T dcp (285 °C) of untreated biomass. Among the tested NADES reagents, lactic acid/choline chloride at molar ratio of 5:1 extracted maximum lignin of 68?±?4 mg g?1 from the rice straw biomass, and subsequent enzymatic hydrolysis of the residual holocellulose enriched biomass showed maximum reducing sugars of 333?±?11 mg g?1 with a saccharification efficiency of 36.0?±?3.2 % in 24 h at 10 % solids loading.  相似文献   

4.

Introduction

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) receiving untreated recirculating aquaculture system wastewater.

Materials and methods

The hydraulic loading rate was 3.75 cm day?1. Many of the monitored water quality parameters (biological oxygen demand [BOD], total suspended solids [TSS], total phosphorus [TP], total nitrogen [TN], total ammoniacal nitrogen [TAN], nitrate nitrogen [NO3], and Escherichia coli) were removed efficiently by the CWs, to the extent that the CW effluent was suitable for use on human food crops grown for raw produce consumption under Victorian state regulations and also suitable for reuse within aquaculture systems.

Results and discussion

The BOD, TSS, TP, TN, TAN, and E. coli removal in the A. donax and P. australis beds was 94%, 67%, 96%, 97%, 99.6%, and effectively 100% and 95%, 87%, 95%, 98%, 99.7%, and effectively 100%, respectively, with no significant difference (p?>?0.007) in performance between the A. donax and P. australis CWs. In this study, as expected, the aboveground yield of A. donax top growth (stems + leaves) (15.0?±?3.4 kg wet weight) was considerably more than the P. australis beds (7.4?±?2.8 kg wet weight). The standing crop produced in this short (14-week) trial equates to an estimated 125 and 77 t ?ha?1 year?1 biomass (dry weight) for A. donax and P. australis, respectively (assuming that plant growth is similar across a 250-day (September–April) growing season and a single-cut, annual harvest).

Conclusion

The similarity of the performance of the A. donax- and P. australis-planted beds indicates that either may be used in horizontal subsurface flow wetlands treating aquaculture wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilization of the energy-rich biomass produced.
  相似文献   

5.
Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg?1) and other metals (e.g., 48.3 mg Cu kg?1, 2370 mg Zn kg?1, 44.9 mg Pb kg?1, and 0.59 mg Cd kg?1). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg?1), Aster subulatus (310 mg Cr kg?1), and Brassica chinensis (300 mg Cr kg?1), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.  相似文献   

6.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

7.
Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the P?íbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants’ aboveground and belowground biomass and in woody plants’ leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg?1 in twigs and 16.74 and 1188 mg kg?1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg?1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.  相似文献   

8.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

9.

Background, aim, and scope

Assessment of environmental impacts from pesticide utilization should include genotoxicity studies, where the possible effects of mutagenic/genotoxic substances on individuals are assessed. In this study, the genotoxicity profile of the new formicide Macex® was evaluated with two genotoxicity tests, namely, the micronucleus test with mouse bone marrow and Vicia faba, and a mutagenicity test using the Ames Salmonella assay.

Materials and methods

The bacterial reverse mutation test (Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1535), the Vicia root tip and mouse micronucleus tests were conducted according to published protocols.

Results

In the range of the formicide Macex® concentrations tested from 0.06 to 1.0 g?L?1 (or mgkg?1 in the mouse test), no genotoxicity was observed in the prokaryotic or eukaryotic test organisms. However, at Macex® concentrations of 0.5 g?L?1 and above a significant decrease in the mitotic index (P?≤?0.05) in the V. faba was observed. Micronucleus formation was likewise increased in the test organism at concentrations starting at 2.0 g?L?1.

Conclusions

These data allow us to classify this natural formicide preparation as a product with no geno-environmental-impact when applied at recommended concentrations.
  相似文献   

10.
Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4 +-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50–60 % removal could be achieved at the highest N concentration of 1000 mg L?1 at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5–10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05–0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca2+, Mg2+, protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2 ?-N and NO3 ?-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.  相似文献   

11.
The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV–visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7?×?104 CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.  相似文献   

12.
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for CrVI reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.  相似文献   

13.
Four subsurface horizontal-flow constructed wetlands (CWs) at a pilot scale planted with a polyculture of the tropical plants Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) were evaluated for 7 months. The CW cells with an area of 17.94 m2 and 0.60 m (h) each and 0.5 m of gravel were operated at continuous gravity flow (Q?=?0.5 m3 day?1) and a theoretical HRT of 7 days each and treating landfill leachate for the removal of filtered chemical oxygen demand (CODf), BOD5, TKN, NH4 +, NO3 ?, PO4 3?–P and Cr(VI). Three CWs were divided into three sections, and each section (5.98 m2) was seeded with 36 cuttings of each species (plant density of six cuttings per square metre). The other unit was planted randomly. The final distributions of plants in the bioreactors were as follows: CW I (He-Ce-Gs), CW II (randomly), CW III (Ce-Gs-He) and CW IV (Gs-He-Ce). The units received effluent from a high-rate anaerobic pond (BLAAT®). The results show a slightly alkaline and anoxic environment in the solid-liquid matrix (pH?=?8.0; 0.5–2 mg L?1 dissolved oxygen (DO)). CODf removal was 67 %, BOD5 80 %, and TKN and NH4 + 50–57 %; NO3 ? effluents were slightly higher than the influent, PO4 3?–P (38 %) and Cr(VI) between 50 and 58 %. CW IV gave the best performance, indicating that plant distribution may affect the removal capacity of the bioreactors. He and Gs were the plants exhibiting a translocation factor (TF) of Cr(VI) >1. The evaluated plants demonstrated their suitability for phytoremediation of landfill leachate, and all of them can be categorized as Cr(VI) accumulators. The CWs also showed that they could be a low-cost operation as a secondary system for treatment of intermediated landfill leachate (LL).  相似文献   

14.
This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m?3·m?2 leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m?3·m?2 leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7 % in S. actinophylla, and 46.9 and 53.1 % in F. benghalensis, for an average of 47 and 53 % for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5 % in S. actinophylla, and 60.7 and 39.3 % in F. benghalensis, for an average of 60 and 40 % for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39 %. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.  相似文献   

15.
The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 μm (PM2.5) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM2.5 was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM2.5 in the smoking area in all days of monitoring was 66 versus 34 μg/m3 in the control area (P?<?0.001). In addition, the elements Al, Cd, Cu, Ni, Pb, Rb, Sb, Se, and V in Tradescantia pallida and Al, Ba, Cr, Cu, Fe, Mg, Pb, and Zn in Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1?±?10.7 %) compared with control (17.6?±?4.5 %) (P?=?0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.  相似文献   

16.
In Aguascalientes, Mexico, there is a special concern about pesticides because of their intensive use on guava production areas, which are located in the vicinity of water reservoirs; thus, non-target organisms could be exposed. Thereafter, the aim of this work was to assess the effect of cypermethrin, Faena® (glyphosate), and malathion, which are the most used pesticides in Aguascalientes’ guava production, on the indigenous freshwater species Alona guttata (cladoceran) and Lecane papuana (rotifer). Acute 48-h toxicity tests were carried out, and LC50 values were calculated. Then, five sublethal concentrations (1/80, 1/40, 1/20, 1/10, and 1/5 of the respective LC50) were selected for the chronic assays: (a) intrinsic growth rate analysis in the rotifer and (b) partial life table analysis in the cladoceran. The results of the acute toxicity tests showed that A. guttata was more sensitive to malathion (LC50 = 5.26 × 10?3 mg/L) at concentrations found in natural environments with continuous application on guava fields, whereas L. papuana was more sensitive to Faena® (LC50 = 19.89 mg/L). The somatic growth of A. guttata was inhibited for the chronic exposure to cypermethrin. In addition, cypermethrin and Faena® seemed to exert endocrine disruptive effects on A. guttata. Moreover, malathion chronic exposure significantly decreased the survival of A. guttata. Moreover, L. papuana was affected chronically for the three pesticides.  相似文献   

17.
Considerable researches have documented the negative effects of ozone on woody species in North America and Europe; however, little is known about how woody tree species respond to elevated O3 in subtropical China, and most of the previous studies were conducted using pot experiment. In the present study, Machilus ichangensis Rehd. et Wils (M. ichangensis) and Taxus chinensis (Pilger) Rehd. (T. chinensis), evergreen tree species in subtropical China, were exposed to non-filtered air (NF), 100 nmol mol?1 O3 (E1) and 150 nmol mol?1 O3 (E2), in open-top chambers under field conditions from 21st March to 2nd November 2015. In this study, O3 fumigation significantly reduced net photosynthesis rate (Pn) in M. ichangensis in the three measurements and in T. chinensis in the last measurement. Also, non-stomatal factors should be primarily responsible for the decreased Pn. O3 fumigation-induced increase in malondialdehyde, superoxide dismutase, and reduced ascorbic acid levels indicated that antioxidant defense mechanism had been stimulated to prevent O3 stress and repair the oxidative damage. Yet, the increase of antioxidant ability was not enough to counteract the harm of O3 fumigation. Because of the decrease in CO2 assimilation, the growth of the two tree species was restrained ultimately. The sensitivity of the two tree species to O3 can be determined: M. ichangensis > T. chinensis. It suggests a close link between the rising O3 concentrations and the health risk of some tree species in subtropics in the near future.  相似文献   

18.
The influence of molybdenum oxide nanoparticles (MoO3) on the growth and survival of Eisenia fetida was established. The activity of antioxidant enzymes and changes in concentration of molybdenum in the body of E. fetida were determined. The degree of bacterial bioluminescence inhibition in extracts of substrates and worm was studied using luminescent strain Escherichia coli K12 TG1. The enzymatic activity of substrates before and after exposure with nanoparticles and worms was assessed. Nanoparticles have concentrations of 10, 40, and 500 mg/kg of dry matter, and substrata are made of artificial soil (substrate A) and microcrystalline cellulose (substrate B). Spherical nanoparticles MoO3, yellow in color, with size 92?±?0.3 nm, Z-potential 42?±?0.52 mV, molybdenum content 99.8 mass/%, and specific area 12 m2/g were used in the study. A significant decrease by 23.3 % in weight was registered (for MoO3 NPs at 500 mg/kg) on substrate A (p?≤?0.05). On substrate B, the maximum decrease in weight by 20.5, 33.3, and 16.9 % (p?≤?0.05) was registered at a dose of 10, 40, and 500 mg/kg, respectively; mortality was from 6.6 to 73 %. After the assessment of bacterial bioluminescence inhibition in substrates A and B (extracts) and before worms were put, the toxicity of substrates was established at doses of 40 and 500 mg/kg, expressed in inhibitory concentration (IC) 30 and IC 50 values. Comparatively, on days 7 and 14, after exposure in the presence of E. fetida, no inhibition of bioluminescence was registered in extracts of substrates A and B, indicating the reduction in toxicity of substrates. The initial content of molybdenum in E. fetida was 0.9?±?0.018 mg/kg of dry matter. The degree of molybdenum accumulation in worm tissue was dependent on the dose and substrate quality. In particular, 2–7 mg/kg of molybdenum accumulated from substrate A, while up to 15 kg/kg of molybdenum accumulated from substrate B (day 7). Molybdenum concentration decreased by 64.8 and 57.4 % at doses 40 and 500 mg/kg, respectively, on day 14. The reaction of antioxidant enzymes was shown in an insignificant increase of glutathione reductase (GSR) and catalase (CAT) at concentrations of 10 and 40 mg/kg in substrate A, followed by the subsequent reduction of their activity at the dose of 500 mg/kg MoO3. The activity of GSR in substrate B against the presence of MoO3 nanoparticles decreased, with significant difference of 33.5 % (p?≤?0.05) at the dose of 500 mg/kg compared with untreated soil. In experiments with substrate A, an increase of catalase activity was registered for the control sample. The presence of MoO3 nanoparticles at the concentration of 10 mg/kg in the environment promoted enzymatic activity on days 7 and 14, respectively. A further increase of nanoparticle concentration resulted in the decrease of catalase activity with a minimum value at the concentration of MoO3 of 500 mg/kg. In the experiment with substrate B at the concentration of MoO3 nanoparticles of 40 mg/kg, enzymatic activity increases on day 7 of exposure. However, the stimulating effect of nanoparticles stops by day 14 of the experiment and further catalase activity is dose dependent with the smallest value in the experiment with MoO3 having the concentration of 500 mg/kg.  相似文献   

19.
Medicago sativa was cultivated at a former harbor facility near Bordeaux (France) to phytomanage a soil contaminated by trace elements (TE) and polycyclic aromatic hydrocarbons (PAH). In parallel, a biotest with Phaseolus vulgaris was carried out on potted soils from 18 sub-sites to assess their phytotoxicity. Total soil TE and PAH concentrations, TE concentrations in the soil pore water, the foliar ionome of M. sativa (at the end of the first growth season) and of Populus nigra growing in situ, the root and shoot biomass and the foliar ionome of P. vulgaris were determined. Despite high total soil TE, soluble TE concentrations were generally low, mainly due to alkaline soil pH (7.8–8.6). Shoot dry weight (DW) yield and foliar ionome of P. vulgaris did not reflect the soil contamination, but its root DW yield decreased at highest soil TE and/or PAH concentrations. Foliar ionomes of M. sativa and P. nigra growing in situ were generally similar to the ones at uncontaminated sites. M. sativa contributed to bioavailable TE stripping by shoot removal (in g ha?1 harvest?1): As 0.9, Cd 0.3, Cr 0.4, Cu 16.1, Ni 2.6, Pb 4, and Zn 134. After 1 year, 72 plant species were identified in the plant community across three subsets: (I) plant community developed on bare soil sowed with M. sativa; (II) plant community developed in unharvested plots dominated by grasses; and (III) plant community developed on unsowed bare soil. The shoot DW yield (in mg ha?1 harvest?1) varied from 1.1 (subset I) to 6.9 (subset II). For subset III, the specific richness was the lowest in plots with the highest phytotoxicity for P. vulgaris.  相似文献   

20.
This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号