首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Kong W  Li C  Dolhi JM  Li S  He J  Qiao M 《Chemosphere》2012,87(5):542-548
Veterinary antibiotics are widely used for disease treatment, prevention and animal growth promoting. Frequent detection of veterinary antibiotics in environments, caused by land application of untreated or even treated antibiotics-containing animal wastes, has posed the growing concern of their adverse effect on natural ecosystems. Oxytetracycline (OTC) is one of the most widely-used veterinary antibiotics in livestock industry. OTC present as a cation, zwitterions, or net negatively charged ion in soils complicates predicting its sorption characteristics and potential bioavailability and toxicity. This study was to identify soil properties influencing OTC sorption and its subsequent bioavailability in five soils with various physical-chemical properties. A solution used to determine bioavailable analytes in soils and sediments, 1 M MgCl2 (pH 8.5), was chosen to desorb the potentially bioavailable fraction of OTC sorbed onto soils. Our results demonstrated that soils with higher illite content and permanent cation exchange capacity have higher OTC sorption capacity, but increase the availability of sorbed OTC indicated by higher release of sorbed OTC from soils into aqueous phase in 1 M MgCl2 (pH 8.5). Reversely, soil organic matter (SOM), clay, kaolinite, variable cation exchange capacity, DCB-Fe and -Al have lower OTC sorption capacity, but decrease the release of sorbed OTC from soils into 1 M MgCl2. These findings indicate that SOM and clay greatly influence OTC adsorption and potential availability. This study contributes significantly to our understanding of the potential bioavailability of sorbed OTC and the effects of soil properties on OTC sorption behaviors in soils.  相似文献   

2.
The use of organic amendments has been suggested as a method of controlling pesticide leaching through soils. The enarenados soils of the intensive horticulture of the Almeria province of southern Spain contain buried organic matter horizons above a soil layer amended with clay. This region is ideal for understanding the potential for and limitations of organic amendments in preventing pesticide pollution. This study measured the sorption and degradation potential of carbofuran in this soil system and the hydrological behaviour of the soil horizons. The sorption of carbofuran was controlled by the organic carbon content, the degradation was strongly pH-dependent and the acidic organic layer protected the sorbed carbofuran against degradation. Hydrologically, the soil system is dominated by ponding above an amended clay layer and by the presence of macropores that can transport water through this clay. A simple model is proposed on this basis and shows that although high levels of dissolved organic carbon can be released by buried organic horizons, the major control on re-release of sorbed pesticide is the potential for sorption hysteresis in this organic layer. A comparison of sorption and degradation data for carbamate insecticides used in the region with groundwater observations for these compounds shows that no amount of incorporated organic would protect against pollution from highly water-soluble compounds.  相似文献   

3.
1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.  相似文献   

4.
Cyclodextrins, especially random methylated betaCD (RAMEB) and hydroxypropyl betaCD (HPbetaCD), are becoming common enhancing additives in the bioremediation of soils formerly contaminated by hydrocarbons and/or other poorly bioavailable organic pollutants. Therefore, their degradation in the soil, particularly the most persistent RAMEB, has been of great concern. Like oil contaminants, these additives should be biodegradable via an environmentally safe technology. Hence, in this paper, the biodegradability of eight different cyclodextrins (CDs) in four different soils was examined under various treatment conditions in laboratory and pilot scale field experiments. This paper is the first report on the potential biological fate of CDs studied under a large variety of environmental conditions and in different soil ecosystems. Data on the potential relationship between CD biodegradation and the biological removal of hydrocarbons in the CD-amended contaminated soils are also given. All CDs were found to be more or less biodegradable; even the most persistent RAMEB was depleted from soils under favourable conditions. In the field experiments, the depletion of RAMEB to about 40% of its initial level was observed for a period of 2 years in hydrocarbon-contaminated soils of high organic matter and cell concentration.  相似文献   

5.
Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p?<?0.05), suggesting the importance of the sorption capacity in affecting desorption and biodegradation of phenanthrene. Strong linear relationships were observed between the amount of HPCD-extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments.  相似文献   

6.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, β-CD and its two derivatives, randomly methylated β-CD (RAMEB) and hydroxypropyl β-CD (HP-β-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of β -CD and HP-β -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated β-CD and HP-β-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

7.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

8.
Oishi K  Toyao K  Kawano Y 《Chemosphere》2008,73(11):1788-1792
The suppressive effects of cyclodextrins (CDs) on the strong estrogenic activity of 17β-estradiol (E2) in water environments were investigated in this study. Cyclodextrins are doughnut-shaped molecules that possess a hydrophobic cavity and a hydrophilic exterior. The cavity can incorporate nonpolar molecules as guests to form inclusion complexes. β-CD and 2-hydroxypropyl-β-CD (HP-β-CD) were the most successful in forming a complex with E2 and improving its low aqueous solubility. The E2/CDs complexes bound to the estrogen receptor in a cell-free system as determined by ELISA and suppressed the hormone activities as measured by a yeast two-hybrid assay. These results indicate that hydrophobic E2 is easily transported through the lipid zone of the plasma membrane into the target cell and can bind to the nuclear receptor. However, the hydrophilic E2/β-CD and E2/HP-β-CD complexes do not penetrate the membrane. Therefore, these CDs are able to suppress the hormone activity of E2 through complex formation.  相似文献   

9.
The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment.  相似文献   

10.
Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P < 0.05) with increasing soil organic carbon content (SOC) and with an increasing annual rate of beef cattle manure. The 17β-estradiol mineralization half-life was significantly negatively correlated, and the total amount of 17β-estradiol mineralized at 90 days (MAX) was significantly positively correlated with 17β-estradiol sorption. The long-term rate of manure application had no significant effect on MAX, but the addition of fresh beef cattle manure in the laboratory resulted in significantly (P < 0.05) smaller MAX values. None of the treatments showed MAX values exceeding one-third of the 17β-estradiol applied.  相似文献   

11.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

12.
Herbicide leaching through soil into groundwater greatly depends upon sorption-desorption and degradation phenomena. Batch adsorption, desorption and degradation experiments were performed with acidic herbicide MCPA and three soil types collected from their respective soil horizons. MCPA was found to be weakly sorbed by the soils with Freundlich coefficient values ranging from 0.37 to 1.03 mg1−1/n kg−1 L1/n. It was shown that MCPA sorption positively correlated with soil organic carbon content, humic and fulvic acid carbon contents, and negatively with soil pH. The importance of soil organic matter in MCPA sorption by soils was also confirmed by performing sorption experiments after soil organic matter removal. MCPA sorption in these treated soils decreased by 37-100% compared to the original soils. A relatively large part of the sorbed MCPA was released from soils into aqueous solution after four successive desorption steps, although some hysteresis occurred during desorption of MCPA from all soils. Both sorption and desorption were depth-dependent, the A soil horizons exhibited higher retention capacity of the herbicide than B or C soil horizons. Generally, MCPA sorption decreased in the presence of phosphate and low molecular weight organic acids. Degradation of MCPA was faster in the A soil horizons than the corresponding B or C soil horizons with half-life values ranging from 4.9 to 9.6 d in topsoils and from 11.6 to 23.4 d in subsoils.  相似文献   

13.
Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P < 0.05) with increasing soil organic carbon content (SOC) and with an increasing annual rate of beef cattle manure. The 17β-estradiol mineralization half-life was significantly negatively correlated, and the total amount of 17β-estradiol mineralized at 90 days (MAX) was significantly positively correlated with 17β-estradiol sorption. The long-term rate of manure application had no significant effect on MAX, but the addition of fresh beef cattle manure in the laboratory resulted in significantly (P < 0.05) smaller MAX values. None of the treatments showed MAX values exceeding one-third of the 17β-estradiol applied.  相似文献   

14.

Sorption of the estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on four soils was examined using batch equilibrium experiments with initial estrogen concentrations ranging from 10 to 1000 ng mL?1. At all concentrations, >85% of the three estrogens sorbed rapidly to a sandy soil. E1 sorbed more strongly to soil than E2 or EE2. Partial oxidation of E2 to E1 was observed in the presence of soils. Autoclaving was more effective at reducing this conversion than inhibition with sodium azide or mercuric chloride, and had little effect on sorption, relative to the chemical microbial inhibitors. Sorption of EE2 was greater for fine-textured than coarse-textured soils, but greater than 90% of EE2 sorbed onto all four soils. The greatest degree of desorption of estrogens from the sandy soil occurred with the lowest initial concentration of 10 ng mL?1 and reached levels ≥80% for E1 and E2. Desorption of EE2 was greater in coarser textured soils than finer-textured soils. Again, relative desorption from all soils was greatest with low initial concentrations. Therefore, at environmentally relevant concentrations, estrogens quickly sorb to soils, and soils have a large capacity to bind estrogens, but these endocrine-disrupting compounds can become easily desorbed and released into the aqueous phase.  相似文献   

15.
Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs approximately 3.0 and approximately 7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH approximately 7.0 than at pH approximately 3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH approximately 7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH approximately 3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH approximately 3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars.  相似文献   

16.
Miscible-displacement experiments were conducted to compare the effects of aqueous soil solutions with ethyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol on the movement of metals through soils. Aqueous or alcohol solutions containing 1 mM each Cd, Ni, and Zn and 5 mM Ca were perfused through columns containing River Sand, Canelo loam (Canelo 1) or Mohave sandy clay loam (Mohave scl) until effluent metal concentrations (C) equaled influent concentrations (C0) or CC0−1 = 1. In general, the order of sorption was Zn > Ni > Cd in aqueous-perfused columns, while in alcohol-perfused columns sorption of Ni Cd ≥ Zn. In comparison to aqueous solutions, alcohols reduced total metal sorption by at least 25%. Metal sorption was best correlated to cation exchange capacity of the soil, sorption of metals being greatest in the Mohave scl and least in the River Sand. After CC0−1 = 1 was reached, columns were leached with deionized water. While leaching did not affect the sorption of metals in columns which had been perfused with aqueous solvents, sorption behavior of metals changed significantly in columns which had been perfused with alcohol solvents. Leaching caused desorption of 5 to 30% of the sorbed Ni. In general, Cd was desorbed (up to 45%) from the soils tested. The exceptions were River Sand columns perfused with diethylene and triethylene glycol in which additional Cd was sorbed to the soil from the soil solution. Additional Zn was sorbed in all columns tested with the exception of the Canelo 1 column perfused with ethyl alcohol.  相似文献   

17.
Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides.  相似文献   

18.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

19.
Sorption of copper, zinc and lead on soil mineral phases   总被引:3,自引:0,他引:3  
Sipos P  Németh T  Kis VK  Mohai I 《Chemosphere》2008,73(4):461-469
Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.  相似文献   

20.
This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2.4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 microg(1 - 1/n) g(-1) mL(1/n). First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号