首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthetic wastewater containing phenol as sole substrate was respectively treated at temperatures of 26±1°C and 37±1°C in 2.8 litre upflow anaerobic sludge blanket (UASB) reactors. At the two temperatures, pH 7.0–7.5, with a 1:1 effluent recycle ratio, phenol in wastewater was efficiently degraded in a UASB reactor. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that less shift in the microbial community occurred with the temperature changing. Phenol degradation in wastewater was recommended to select ambient temperature in UASB reactors. The optimal HRT was 12 to 16 hours corresponding to 6.0–4.5 g COD/(l.d) loading rate at ambient temperature in UASB reactors. The distribution of archaeal and bacterial populations in the UASB granular consortium was revealed using fluorescence in situ hybridisation (FISH) technique.  相似文献   

2.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

3.
采用南京江心洲污水处理厂的厌氧消化污泥作为厌氧折流板反应器(ABR)的接种污泥,研究室温(25±5)℃条件下ABR对邻苯二甲酸二丁酯(DBP)降解的运行特性。结果表明,ABR在室温、容积负荷为0.9-1.8 kg/(m3·d)条件下启动运行30 d可以达到运行稳定,其COD去除率在90%左右。在负荷提高阶段,当水力停留时间(HRT)为12 h,容积负荷为2.0-6.8 kg/(m3·d)时,反应器对COD平均去除率大于85%;当HRT为12 h,容积负荷6.8 kg/(m3·d)时,COD去除率达90.7%,DBP降解率达87.3%。  相似文献   

4.
为了研究厌氧折流板反应器在常温下的启动情况,在22.5~30.2℃条件下,对不加填料的5隔室厌氧折流板反应器和加填料的4隔室复合式厌氧折流板反应器同步进行了启动实验。实验用水为高浓度淀粉废水,两反应器采用相同的启动策略,即梯度增加进水COD浓度与降低水力停留时间相结合的方式。两反应器有效容积均为47.8 L,启动初始负荷为0.6 kg COD/(m3.d),逐渐增加到10 kg COD/(m3.d)。实验表明,经过6个阶段87 d的运行,反应器启动完成,并成功培养出颗粒污泥,两反应器对COD的去除率都能达到85%以上。在启动过程中两反应器对COD的去除效率相近。  相似文献   

5.
This paper introduces a new reversible-flow design for a continuously stirred reactor used to study sorption mass transfer in soil and solvent systems. The stirred reactor has potential advantages over conventional packed column or batch reactors because it isolates intraparticle sorption rate limitations from advective-dispersive transport, yet allows changes to flux through the reactor for analysis of sorption kinetics under dynamic conditions. Previously, stirred reactors have often failed due to clogging of sediment on the effluent frit. The reverse-flow backwashing design allows longer life and higher confidence in maintaining mixed conditions than previous designs. Mass transfer 'rate coefficients estimated from stirred and column experiments are compared; both techniques produced results consistent with a published correlation. The data also show that fitted sorption mass transfer coefficients can be strongly dependent on the choice of equilibrium partition coefficient (i.e. batch or first-moment derived values), and that the conventional two-site sorption kinetics model fails to accurately predict sorption mass transfer in the presence of changing solvent velocity through the reactor.  相似文献   

6.
An investigation of biodegradation of chlorinated phenol in an anaerobic/aerobic bioprocess environment was made. The reactor configuration used consisted of linked anaerobic and aerobic reactors, which served as a model for a proposed bioremediation strategy. The proposed strategy was studied in two reactors before linkage. In the anaerobic compartment, the transformation of the model contaminant, 2,4,6-trichlorophenol (2,4,6-TCP), to lesser-chlorinated metabolites was shown to occur during reductive dechlorination under sulfate-reducing conditions. The consortium was also shown to desorb and mobilize 2,4,6-TCP in soils. This was followed, in the aerobic compartment, by biodegradation of the pollutant and metabolites, 2,4-dichlorophenol, 4-chlorophenol, and phenol, by immobilized white-rot fungi. The integrated process achieved elimination of the compound by more than 99% through fungal degradation of metabolites produced in the dechlorination stage. pH correction to the anaerobic reactor was found to be necessary because acidic effluent from the fungal reactor inhibited sulfate reduction and dechlorination.  相似文献   

7.
A model of temperature dynamics was developed as part of a general model of activated-sludge reactors. Transport of heat was described by the one-dimensional, advection-dispersion equation, with a source term based on a theoretical heat balance over the reactor. The model was compared to several reference models, including a tanks-in-series model and the dispersion model with heat components neglecting biochemical-energy inputs and other activated-sludge, heat-balance terms. All the models were tested under steady-state and dynamic conditions at a full-scale facility, the Rock Creek wastewater treatment plant in Hillsboro, Oregon, using meteorological data from a station located 16 km from the plant. The dispersion model and tanks-in-series model matched in situ temperature data with absolute-mean errors less than 0.1 degrees C. Neglecting biochemical-heat-energy inputs in the activated-sludge reactor underestimated temperatures by up to 0.5 degrees C. The biochemical-heat-energy inputs accounted for 30 to 40% of the total heat flux throughout the year.  相似文献   

8.
采用2个相同的厌氧折流板反应器(ABR)研究不同温度、有机负荷对ABR启动过程中胞外聚合物(EPS)产生的影响,以及各隔室优势菌种。结果表明,高温和较高的有机负荷(OLR)促进EPS的产生,而EPS有利于颗粒污泥的形成。较高温度也有利于反应器承受更高的有机负荷。启动结束后,沿着水流方向,隔室中的污泥发生变化,由水解酸化菌演替为产甲烷优势菌。  相似文献   

9.
Ağdağ ON  Sponza DT 《Chemosphere》2005,59(6):871-879
This study investigated the effects of alkalinity on the anaerobic treatment of the organic solid wastes collected from the kitchen of Engineering Faculty in Dokuz Eylul University, Izmir, Turkey and the leachate characteristics treated in three simulated landfill anaerobic bioreactors. All of the reactors were operated with leachate recirculation. One reactor was operated without alkalinity addition. The second reactor was operated by the addition of 3 g l-1 d-1 of NaHCO3 alkalinity to the leachate and the third reactor was operated by the addition of 6 g l-1 d-1 NaHCO3 alkalinity to the leachate. After 65 d of anaerobic incubation, it was observed that the chemical oxygen demand (COD), volatile fatty acids (VFA) concentrations, and biochemical oxygen demand to chemical oxygen demand (BOD5/COD) ratios in the leachate samples produced from the alkalinity added reactors were lower than the control reactor while the pH values were higher than the control reactor. The COD values were measured as 18900, 3800 and 2900 mg l-1 while the VFA concentrations were 6900, 1400 and 1290 mg l-1, respectively, in the leachate samples of the control, and reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 after 65 d of anaerobic incubation. The total nitrogen (TN), total phosphorus (TP) and ammonium nitrogen (NH4-N) concentrations in organic solid waste (OSW) significantly reduced in the reactor containing 6 g l-1 NaHCO3 by d 65. The values of pH were 6.54, 7.19 and 7.31, after 65 d of anaerobic incubation, respectively, in the aforementioned reactors results in neutral environmental conditions in alkalinity added reactors. Methane percentage of the control, reactors containing 3 g l-1 NaHCO3 and 6 g l-1 NaHCO3 were 37%, 64% and 65%, respectively, after 65 d of incubation. BOD5/COD ratios of 0.27 and 0.25 were achieved in the 3 and 6 g l-1 NaHCO3 containing reactors, indicating a better OSW stabilization. Alkalinity addition reduced the waste quantity, the organic content of the solid waste and the biodegradation time.  相似文献   

10.
Microbial kinetic analysis of three different types of EBNR process   总被引:3,自引:0,他引:3  
Pai TY  Tsai YP  Chou YJ  Chang HY  Leu HG  Ouyang CF 《Chemosphere》2004,55(1):109-118
The disadvantages of developed biological nutrient removal (BNR) processes (additional energy for liquid circulation and addition of external carbon substrate for denitrification in anoxic zones) were improved by reconfiguring the process into (1) an anaerobic zone followed by multiple stages of aerobic-anoxic zones (TNCU3 process) or (2) anaerobic, oxic, anoxic, oxic zones in sequence (TNCU2 process). These two pilot plants were operated at a recycling sludge ratio of 0.5 without internal recycle of nitrified supernatant. The sludge retention time was maintained at 10 d. The main objective of this study is to analyze the kinetics of different microorganisms in these two processes and A2O process by using the Activated Sludge Model No. 2d. The effective removal efficiency of carbon, total phosphorus and total nitrogen at 87-98%, 92-100% and 63-80%, respectively, were achieved in the testing runs. According to model simulations, the microbial kinetics in the TNCU3 and TNCU2 processes would be affected by different operations. When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities by about 6% in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities by about 12% due to the dilution effect. The dilution effects in TNCU3 and TNCU2 processes did not take place in A2O process because the recycling mixed liquid from the aerobic reactor to the anoxic reactor still contained particulate components. The XH, XPAO, and XAUT concentrations in the effluent of the last tank were lower when the step-feeding mode was adopted. The TNCU3 and TNCU2 processes could be operated efficiently without nitrified liquid circulation and addition of external carbon substrate for denitrification.  相似文献   

11.
絮凝剂对高速厌氧反应器污泥颗粒化的强化作用   总被引:5,自引:1,他引:4  
以考察絮凝剂对厌氧反应器中活性污泥性能的影响为目的,将聚合氯化铝(PAC)、聚丙稀酰胺(PAM)、聚季铵盐3种不同类型絮凝剂以不同投加量添加到反应器中,采用生物化学甲烷势(BMP)和厌氧毒性测定(ATA)分析方法,评价了3种絮凝剂的厌氧生物可降解性以及3种絮凝剂对厌氧污泥产甲烷活性、沉降性能等方面的促进或抑制作用。确定以聚季铵盐作为厌氧污泥颗粒化促进剂,建议采用多次投加方式,反应器中聚季铵盐质量浓度以10-50mg/L为宜。  相似文献   

12.
Performance of mixed microbial anaerobic culture in treating synthetic wastewater with high Chemical Oxygen Demand (COD) and varying atrazine concentration was studied. Performance of hybrid reactors with wood charcoal as adsorbent, with a dose of 10 g/l and 40 g/l, along with the microbial mass was also studied. All the reactors were operated in sequential mode with Hydraulic Retention Time (HRT) of 5 days. In all the cases, COD removal after 5 days was found to be above 81%. Initial COD was above 1000 mg/l. From a hybrid reactor COD removal after 2 days was observed to be 90%. Atrazine reduction after 5 days by microbial mass alone was 43.8%, 40% and 33.2% with an initial concentration of 0.5, 1.0 and 2.0 mg/l respectively. MLSS on all the cases were almost same. Increasing MLSS concentration by about 2 fold did not increase the atrazine removal efficiency significantly. Maximum atrazine removal was observed to be 64% from the hybrid reactor with 10 g/l of wood charcoal and 69.4% from the reactor with 40 g/l of wood charcoal. Atrazine removal from the hybrid reactors after 15 days were observed to be 35.7% and 38.7%, which showed that the higher dose of wood charcoal in hybrid reactor did not improve the atrazine removal efficiency significantly. Specific methanogenic activity test showed no inhibitory effect of atrazine on methane producing bacteria. The performance of anaerobic microorganisms in removing atrazine with no external carbon source and inorganic nitrogen source was studied in batch mode. With an initial concentration of 1.0 mg/l, reduction of atrazine by the anaerobic microorganisms in absence of external carbon source after 35 days was observed to be 61.8% where as in absence of external carbon and inorganic nitrogen source the reduction was only 44.2% after 150 days. Volatilization loss of atrazine was observed to be insignificant.  相似文献   

13.
Performance of mixed microbial anaerobic culture in treating synthetic waste-water with high Chemical Oxygen Demand (COD) and varying atrazine concentration was studied. Performance of hybrid reactors with wood charcoal as adsorbent, with a dose of 10 g/l and 40 g/l, along with the microbial mass was also studied. All the reactors were operated in sequential mode with Hydraulic Retention Time (HRT) of 5 days. In all the cases, COD removal after 5 days was found to be above 81%. Initial COD was above 1,000 mg/l. From a hybrid reactor COD removal after 2 days was observed to be 90%. Atrazine reduction after 5 days by microbial mass alone was 43.8%, 40% and 33.2% with an initial concentration of 0.5, 1.0 and 2.0 mg/l respectively. MLSS on all the cases were almost same. Increasing MLSS concentration by about 2 fold did not increase the atrazine removal efficiency significantly. Maximum atrazine removal was observed to be 64% from the hybrid reactor with 10 g/l of wood charcoal and 69.4% from the reactor with 40 g/l of wood charcoal. Atrazine removal from the hybrid reactors after 15 days were observed to be 35.7% and 38.7%, which showed that the higher dose of wood charcoal in hybrid reactor did not improve the atrazine removal efficiency significantly. Specific methanogenic activity test showed no inhibitory effect of atrazine on methane producing bacteria. The performance of anaerobic microorganisms in removing atrazine with no external carbon source and inorganic nitrogen source was studied in batch mode. With an initial concentration of 1.0 mg/l, reduction of atrazine by the anaerobic microorganisms in absence of external carbon source after 35 days was observed to be 61.8% where as in absence of external carbon and inorganic nitrogen source the reduction was only 44.2% after 150 days. Volatilization loss of atrazine was observed to be insignificant.  相似文献   

14.
To evaluate whether poly-beta-hydroxyalkanoate (PHA) production and wastewater treatment could be combined in a single biological process, a bench-scale sequencing batch reactor was operated with sequential anaerobic and aerobic stages and removal of excess sludge at different stages of treatment. The reactor treated synthetic wastewater with a high organic and low nutrient content, simulating industrial wastewater. Chemical oxygen demand removal efficiency was more than 90% in all cases. Poly-beta-hydroxyalkanoate accumulation was significant, although it did not appear to be induced by oxygen limitations during the anaerobic stage. Sphaerotilus natans was apparently the dominant PHA-accumulating organism at the end of each reactor run and corresponded to a PHA accumulation of 16 to 20% of the total dry cell mass. Before S. natans dominated the reactors, PHA accumulation was approximately 17% when biomass was removed at the end of the aerobic stage and 6.6% when sludge removal also occurred during the anaerobic stage.  相似文献   

15.
In this study, anaerobic treatability of diluted chicken manure (with an influent feed ratio of 1 kg of fresh chicken manure to 6 L of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with granular seed sludge. The ASB reactor was operated at ambient temperature (17–25°C) in order to avoid the need of external heating up to higher operating temperatures (e.g., up to 35°C for mesophilic digestion). Since heat requirement for raising the temperature of incoming feed for digestion is eliminated, energy recovery from anaerobic treatment of chicken manure could be realized with less operating costs. Average biogas production rates were calculated ca. 210 and 242 L per kg of organic matter removed from the ASB reactor at average hydraulic retention times (HRTs) of 13 and 8.6 days, respectively. Moreover, average chemical oxygen demand (COD) removal of ca. 89% was observed with suspended solids removal more than 97% from the effluent of the ASB reactor. Influent ammonia, on the other hand, did not indicate any free ammonia inhibition due to dilution of the raw manure while pH and alkalinity results showed stability during the study. Microbial quantification results indicated that as the number of bacterial community decreased, the amount of Archaea increased through the effective digestion volume of the ASB reactor. Moreover, the number of methanogens displayed an uptrend like archaeal community and a strong correlation (?0.645) was found between methanogenic community and volatile fatty acid (VFA) concentration especially acetate.  相似文献   

16.
The evaluation of photonic efficiency in heterogeneous photocatalysis remains elusive because the number of absorbed photons is difficult to assess experimentally. The photonic efficiency of heterogeneous photocatalytic reactors depends on the reactor geometry, irradiation source, and photocatalyst properties. In this work, the relative photonic efficiency of heterogeneous photocatalytic reactors to degrade an azo dye was evaluated using phenol as the standard system. The experimental tests were carried out in a batch reactor under different conditions of pH, catalyst dosage, initial concentration, and ultraviolet (UV) lamps. The kinetics of disappearance of both phenol and azo dye were studied using the initial rate method and were described according to the Langmuir-Hinshelwood (L-H) kinetic model. It was observed that the relative photonic efficiency depends on the adsorption/desorption properties of the photocatalyst.  相似文献   

17.
内循环厌氧反应器的启动及影响因素   总被引:1,自引:0,他引:1  
采用内循环(IC)厌氧反应器,以生产淀粉和酒精的混合废水为处理对象,研究了中温条件下IC反应器的启动及影响因素。结果表明:接种厌氧消化污泥进行培养,逐渐提高进水有机负荷,运行105 d后,可实现IC反应器的启动;当进水COD浓度为11 500 mg/L,有机容积负荷为6.13 kg COD/(m3·d),COD去除率能到达95%左右;水力停留时间对启动过程没有影响,而温度和温度波动影响COD去除率;VFA比pH更能准确快速地反眏出反应器内部环境的变化,防止反应器的酸化;反应器内污泥实现颗粒化,并且具有良好的沉降性。  相似文献   

18.
Perez M  Romero LI  Sales D 《Chemosphere》2001,44(5):1201-1211
The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.  相似文献   

19.
In this study, the inhibitory effects of lindane (LIN) on originally unacclimated mixed anaerobic cultures were investigated by anaerobic toxicity assay (ATA) experiments. ATA experiments revealed that 10 mg/l LIN exerted inhibitory effects on anaerobic cultures, which was recoverable. Continuous reactor experiments conducted to determine the inhibitory effects of LIN and the maximum LIN loading rate achievable in two-stage upflow anaerobic sludge blanket (UASB) reactors indicated that anaerobic granular cultures were successfully acclimated to 30 mg/l LIN. The maximum LIN loading rate and minimum hydraulic retention time (HRT) possible for the UASB system were 10 mg/l day and 18 h, respectively, which resulted in the overall chemical oxygen demand (COD) removal efficiency of 89%.  相似文献   

20.
温度变化对厌氧氨氧化反应的影响   总被引:2,自引:0,他引:2  
对一套处理效率高、运行稳定的UASB.生物膜厌氧氨氧化反应器进行了温度变化的实验研究。实验结果表明,厌氧氨氧化反应对温度变化比较敏感,温度从31℃下降到17℃后,反应器内的厌氧氨氧化活性受到显著抑制,氨氮、亚硝酸盐氮和总氮的平均去除率迅速从97.0%、94.1%、86.0%下降为46.2%、41.8%、35.5%。当历时2个月反应器温度逐渐从17℃升高到31℃时,反应器内高效厌氧氨氧化活性逐渐得到恢复。反应器在17℃停止运行2个月后,直接升温至31℃再次运行,仅仅需要17d时间,反应器内厌氧氨氧化高活性就得到恢复,氨氮、亚硝酸盐氮和总氮的最高去除率达到99.4%、90.6%和85.0%。厌氧氨氧化反应的最佳温度应为31℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号