首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24-hr average PM2.5 concentrations ranging from 6 to 38 microg/m3 were measured during the fires, compared with levels of 2-5 microg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was < 3 microg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63-88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58-100% of the concentrations measured outdoors.  相似文献   

2.
Resuspension experiments were performed in a single-family residence. Resuspension by human activity was found to elevate the mass concentration of indoor particulate matter with an aerodynamic diameter less than 10 microm (PM10) an average of 2.5 times as high as the background level. As summarized from 14 experiments, the average estimated PM10 resuspension rate by a person walking on a carpeted floor was (1.4 +/- 0.6) x 10(-4) hr(-1). The estimated residence time for PM in the indoor air following resuspension was less than 2 hr for PM10 and less than 3 hr for 2-microm tracer particles. However, experimental results show that the 2-microm tracer particles stayed in the combined indoor air and surface compartments much longer (>19 days). Using a two-compartment model to simulate a regular deposition and resuspension cycle by normal human activity (e.g., walking and sitting on furniture), we estimated residence time for 2-microm conservative particulate pollutants to be more than 7 decades without vacuum cleaning, and months if vacuum cleaning was done once per week. This finding supports the observed long residence time of persistent organic pollutants in indoor environments. This study introduces a method to evaluate the particle resuspension rate from semicontinuous concentration data of particulate matter (PM). It reveals that resuspension and subsequent exfiltration does not strongly affect the overall residence time of PM pollutants when compared with surface cleaning. However, resuspension substantially increases PM concentration, and thus increases short-term inhalation exposure to indoor PM pollutants.  相似文献   

3.
Modern epidemiology has shown that fluctuations of mortality data are statistically significantly correlated with fluctuations of ambient particulate matter (PM) concentration data. This relation cannot be confounded by exposure to PM of indoor origin because the concentrations of ambient PM are not correlated with concentrations of PM of indoor origin. It has been suggested, given the above understanding, that modern PM exposure measurements and analysis should create separate estimates of exposure to all PM of ambient origin and exposure to all PM of nonambient origin (primarily of indoor origin), and not exposure to total PM. This paper reviews the developments of the form of the general microenvironmental mass balance equation that can be utilized for estimating human exposure to PM of ambient origin and for estimating the portion of total PM exposure that is attributable to nonambient origin PM. The equation is perfectly general and can be applied to conditions of time-varying factors that influence exposure, such as rapidly changing air-exchange rates in a home as doors and windows are opened and closed, and turning on and off air cleaners in a home. It is suggested that this procedure be applied in exposure assessment studies and validated using independent techniques of estimating exposure to PM of ambient origin available in the literature.  相似文献   

4.
The vast majority of dry cleaners worldwide use the toxic chemical perchloroethylene (PCE), which is associated with a number of adverse health and environmental impacts. Professional wet cleaning was developed as a nontoxic alternative to PCE dry cleaning but has not been widely adopted as substitute technology. In the greater Los Angeles, CA, region, a demonstration project was set up to showcase this technology and evaluate its commercial viability by converting seven cleaners from PCE dry cleaning to professional wet cleaning. The demonstration site cleaners who switched to professional wet cleaning were able to maintain their level of service and customer base while lowering operating costs. The cleaners were able to transition to professional wet cleaning without a great degree of difficulty and expressed a high level of satisfaction with professional wet cleaning. Crucial to this success was the existence of the demonstration project, which helped to develop a supporting infrastructure for professional wet cleaning that had otherwise been lacking in the garment care industry.  相似文献   

5.
细颗粒物(PM2.5)随空调新风进入室内,和室内产生的PM2.5粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM2.5浓度与CO2体积分数双组分模型,提出了适用于某会议室不同室内外PM2.5源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM2.5散发源、温和天气室内有无PM2.5散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM2.5浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。  相似文献   

6.
ABSTRACT

A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information.

This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM25 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < 0.1 um) and coarse (2.5 < da < 10 |um) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.  相似文献   

7.
Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5 microm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors. This paper describes a preliminary research effort to develop a methodology for the measurement of nonviable biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 microm were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 microm is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

8.
A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24-hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information. This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM2.5 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < or = 0.1 micron) and coarse (2.5 < or = da < or = 10 microns) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.  相似文献   

9.
利用质量平衡方程建立了一次回风定风量系统室内PM2.5浓度模型,并对新风PM2.5浓度、新风量、室内污染源、过滤器效率、过滤器安装位置等因素对室内PM2.5浓度的影响进行了模拟分析。模拟结果表明:新风PM2.5浓度和室内污染源强度的变化对室内PM2.5浓度均有较大影响;新风量越大,室内PM2.5浓度受新风PM2.5浓度变化的影响越大;将过滤器分别安装在送风段、新风段和回风段,新风比为0.1时,过滤器安装在送风段效果最好,安装在新风段最差,新风比为0.8时,过滤器安装在送风段效果最好,安装在回风段最差;过滤器安装在送风段时,过滤器效率越高,室内PM2.5浓度越低,波动越小。  相似文献   

10.
吕晓慧  张泠  刘忠兵  徐秀 《环境工程学报》2016,10(12):7141-7146
基于浓度守恒原理建立了一次回风空调系统室内PM2.5浓度模型,研究了过滤器分别安装在新风段、回风段和送风段时过滤效率和新风量的变化对室内PM2.5浓度的影响。模拟结果表明:在室外PM2.5浓度大于室内初始值的条件下,过滤器安装在送风段或回风段时,减少新风有利于室内PM2.5污染控制,过滤器安装在新风段时,根据过滤器效率调节新风,过滤效率小于临界效率,减小新风有利于室内污染控制;在室外PM2.5浓度小于室内初始值的条件下,过滤器安装在送风段或新风段时,增加新风有利于室内PM2.5污染控制,过滤器安装在回风段时,也存在临界效率,过滤效率小于临界值,增加新风有利于室内PM2.5污染控制。  相似文献   

11.
室内空气污染对人类健康的影响日益受到关注,目前空气净化系统作为室内空气污染最有效的控制方式,逐渐受到人们的青睐。针对市场上常见的空气净化器和新风净化机这2种空气净化系统,为探究2种系统净化方式的异同,分别构建了内循环、外循环净化理论模型,实际实验验证模型具有正确性。应用模型对影响两系统净化效果的因素进行分析,结果表明,相同条件下,空气净化器对PM2.5去除效率高于新风净化机,且均随着风量、一次通过净化效率、时间的增大而升高,随着房间体积的增大而降低,新风净化机存在最佳建筑物换气次数。室外PM2.5浓度不影响2种空气净化系统对PM2.5的去除率,但随着室外浓度增大,室内PM2.5剩余浓度升高。  相似文献   

12.
ABSTRACT

Exposures from indoor environments are a major issue for evaluating total long-term personal exposures to the fine fraction (<2.5μm in aerodynamic diameter) of particulate matter (PM). It is widely accepted in the indoor air quality (IAQ) research community that biocontamination is one of the important indoor air pollutants. Major indoor air biocontaminants include mold, bacteria, dust mites, and other antigens. Once the biocontaminants or their metabolites become airborne, IAQ could be significantly deteriorated. The airborne biocontaminants or their metabolites can induce irritational, allergic, infectious, and chemical responses in exposed individuals.

Biocontaminants, such as some mold spores or pollen grains, because of their size and mass, settle rapidly within the indoor environment. Over time they may become nonviable and fragmented by the process of desiccation. Desiccated nonviable fragments of organisms are common and can be toxic or allergenic, depending upon the specific organism or organism component. Once these smaller and lighter fragments of biological PM become suspended in air, they have a greater tendency to stay suspended. Although some bioaerosols have been identified, few have been quantitatively studied for their prevalence within the total indoor PM with time, or for their affinity to penetrate indoors.

This paper describes a preliminary research effort to develop a methodology for the measurement of nonvi-able biologically based PM, analyzing for mold and ragweed antigens and endotoxins. The research objectives include the development of a set of analytical methods and the comparison of impactor media and sample size, and the quantification of the relationship between outdoor and indoor levels of bioaerosols. Indoor and outdoor air samples were passed through an Andersen nonviable cascade impactor in which particles from 0.2 to 9.0 um were collected and analyzed. The presence of mold, ragweed, and endotoxin was found in all eight size ranges. The presence of respirable particles of mold and pollen found in the fine particle size range from 0.2 to 5.25 um is evidence of fragmentation of larger source particles that are known allergens.  相似文献   

13.
It is well known that characterization of airborne bioaerosols in indoor environments is a challenge because of inherent irregularity in concentrations, which are influenced by many environmental factors. The primary aim of this study was to quantify the day-to-day variability of airborne fungal levels in a single residential environment over multiple seasons. Indoor air quality practitioners must recognize the inherent variability in airborne bio-aerosol measurements during data analysis of mold investigations. Changes in airborne fungi due to varying season and day is important to recognize when considering health impacts of these contaminants and when establishing effective controls. Using an Andersen N6 impactor, indoor and outdoor bioaerosol samples were collected on malt extract agar plates for 18 weekdays and 19 weekdays in winter and summer, respectively. Interday and intraday variability for the bioaerosols were determined for each sampler. Average fungal concentrations were 26 times higher during the summer months. Day-to-day fungal samples showed a relatively high inconsistency suggesting airborne fungal levels are very episodic and are influenced by several environmental factors. Summer bio-aerosol variability ranged from 7 to 36% and winter variability from 24 to 212%; these should be incorporated into results of indoor mold investigations. The second objective was to observe the relationship between biological and nonbiological particulate matter (PM). No correlation was observed between biological and nonbiological PM. Six side-by-side particulate samplers collected coarse PM (PM10) and fine PM (PM2.5) levels in both seasons. PM2.5 particulate concentrations were found to be statistically higher during summer months. Interday variability observed during this study suggests that indoor air quality practitioners must adjust their exposure assessment strategies to reflect the temporal variability in bioaerosol concentrations.  相似文献   

14.
基于等离子体反应器的室内空气净化装置研究   总被引:2,自引:0,他引:2  
在对比若干室内空气净化方法之后 ,介绍了等离子体空气净化的能力、机理以及光催化反应 ,对基于等离子体反应器的室内空气净化典型装置进行系统分析。对等离子体空气净化技术的研究进行了展望 ,指出存在的问题和发展的方向。  相似文献   

15.
Ionization-based air cleaners can emit high concentrations of ozone. With the aim to limit the ozone concentration below the standard value in actual use conditions, we propose a standard procedure for testing and ranking the ozone emission of air cleaners. It is demonstrated by testing 27 samples of air cleaners that ozone emission rate can be measured in an airtight environmental chamber, by applying a generation-decay model to the concentration increase curve. The results indicate that deposition velocities vd on chamber wall surfaces need to be better characterized so that the ozone emission of a tested product could be characterized by a three-parameter model. The model takes into account actual room sizes and surface material deposition effects to predict ozone concentrations in indoor applications. This procedure accounts for ozone decay effect in an explicit manner and allows using alternative testing chamber sizes other than as specified in the current Underwriters Laboratory standard.  相似文献   

16.
ABSTRACT

Particulate matter (PM) from poultry production facilities may strongly affect the health of animals and workers in the houses, and PM emitted to the ambient air is an important pollution source to the surrounding areas. Aviary system is considered as a welfare friendly production system for laying hens. However, its air quality is typically worse as compared with conventional cage systems, because of the higher PM concentration of indoor air and other airborne contaminants. Furthermore, PM’s physical property, which has a direct impact on the penetration depth into the lungs of the birds and humans, is largely unknown for the aviary system. Therefore, a systematic method was utilized to investigate the characteristics of particles in the aviary house with large cage aviary unit system (LCAU) in Beijing, China. For the field measurements, three measuring locations were selected with two inside and one outside the house with LCAU to continuously monitor PM concentrations and collect the samples for particle size distribution (PSD) analysis. Results showed that PM2.5, PM10, and total suspended particulate (TSP) concentrations averaged at 0.037 ± 0.025 mg/m3, 0.42 ± 0.10 mg/m3, and 1.92 ± 1.91 mg/m3, respectively. Particle concentrations increased from October to December due to less ventilation as the weather got colder, and were generally affected by stocking density, ventilation rate, birds’ activities, and housing system. Meanwhile, indoor PM2.5 concentration was easily impacted by the ambient air quality. Mass median diameter (MMD) and mass geometric standard deviation (MGSD) of the TSP during the measurement were 18.92 ± 7.08 μm and 3.11 ± 0.31, respectively. Count median diameter (CMD) and count geometric standard deviation (CGSD) were 1.94 ± 0.14 μm and 1.48 ± 0.08, respectively. Results indicated that the aviary system can attain a good indoor condition by suitable system design and environment control strategy.

Implications: Indoor PM2.5 concentration of the layer house can be significantly affected by ambient air quality when the air quality index (AQI) was larger than 100. PM2.5 and PM10 concentrations of the layer house with a LCAU system were comparable to the cage system. TSP concentration was higher, and PM size was larger than most of the cage system. System design, larger space volume, and higher ventilation rate were the main influence factors. Good indoor environment of the aviary system can be achieved through the reasonable design of the production system and appropriate environment control strategy.  相似文献   

17.
室内空气中颗粒物污染特征研究   总被引:1,自引:0,他引:1  
为获得室内空气颗粒物污染特征,2009年8月18~24日在某单位工作及生活区选取4个室内点和1个室外点进行颗粒物采样和成分分析.结果表明,室内粗颗粒(PM10)符合<室内空气质量标准>(GB/T 18883-2002),而细粒子(PM2.5)的浓度水平较高,表明室内PM2.5的污染较重;室内与室外PM2.5比值显示,P...  相似文献   

18.
Abstract

Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24‐hr average PM2.5 concentrations ranging from 6 to 38 µg/m3 were measured during the fires, compared with levels of 2–5 µg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was <3 µg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63–88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58–100% of the concentrations measured outdoors.  相似文献   

19.
The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl collection efficiency tests show > 99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 micron in diameter at rates of greater than 10(8) ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 10(3).  相似文献   

20.
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号