首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The method of identifying dry stream reaches in carbonate terrane as surface indicators of potential ground-water reservoirs offers a valuable exploration technique that is more rapid and less expensive than traditional exploration methods involving random test drilling. In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. The occurrence and hydraulic characteristics of such reservoirs are highly variable, as attested to by the wide range of well yields. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: (1) remotely sensed black and white infrared aerial photography; and (2) surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.  相似文献   

2.
ABSTRACT: A regional assessment of water quality in small streams was conducted within four areas of distinct physiography and lithology in the upper Potomac River Basin. The Potomac River is a major tributary to the Chesapeake Bay, and this study provides new insight on the relationships between nutrient concentrations in small streams and watershed characteristics within this river basin. Nutrient concentrations were compared to land-use data including categories for agriculture (cropland and pasture), urban areas, and forests. Among agricultural areas, streams draining areas of intense row cropping typically contained higher nitrate concentrations than did those draining pastures. Streams draining forested areas typically had the lowest nutrient concentrations. Streams in areas underlain by carbonate bedrock were more likely to contain elevated concentrations of inorganic nitrogen and potassium than did streams in areas underlain by fractured siliciclastic or crystalline rocks, and we suggest that this is a physical phenomenon related to high hydraulic conductivities in carbonate ground-water systems. The median nitrate concentrations were highest in the Great Valley portion of the Valley and Ridge physiographic province, particularly in watersheds that have both carbonate bedrock and intensive row cropping. Values of nitrate in these streams ranged up to 8.99 mg/L as nitrogen. The soluble phosphorus concentrations during baseflow were generally low in all sub-units, even in some settings with potential for high phosphorus inputs such as urban areas with municipal point sources or agricultural areas. The mobility of phosphorus in these environments may be hindered by adsorption and geochemical reactions.  相似文献   

3.
ABSTRACT: Ground-water level decline patterns in parts of Nebraska conform to the circular island concept of Bredehoeft et al. (1982), which indicates how water is derived by wells developed in a circular island. If elongated, the center of the island corresponds to a regional ground-water divide while the shoreline corresponds to a regional river. In both versions, ground-water table elevation is a function of recharge and transmissivity. A dynamic equilibrium exists such that the gradient of the water table will convey all recharge to discharge areas. Withdrawals of ground water result initially in mining, with a new equilibrium attained when pumping equals capture. During early development, capture is an important source of water in discharge areas, while mining is more significant in recharge areas. The pattern observed in many areas shows the greatest ground-water level decline in the vicinity of ground-water divides and the steepest gradient near regional rivers. A similar pattern has been observed adjacent to the Arkansas River in south-central Kansas. Similar decline patterns can be modeled for a hypothetical ground-water basin. This is of major importance to water-resource managers because it dictates that management programs be applied to the entire hydrologic system.  相似文献   

4.
ABSTRACT: The U.S. Geological Survey (USGS) is assessing the ground-water resources of the carbonate bedrock aquifers in Indiana and Ohio as part of their Regional Aquifer Systems Analysis program. Part of this assessment includes the determination of unknown aspects of the hydraulic characteristics, boundaries, and flow paths of the carbonate aquifer. To accomplish this, the USGS drilled three wells through the carbonate aquifer near the Kankakee River in northwestern Indiana. Geophysical logs were used to help determine depths and thicknesses for testing and to help describe geology at the three wells. Packer tests were used to determine direction of ground-water flow and to provide data for an analysis of the distribution of transmissivity in the carbonate aquifer. Transmissivity of the carbonates is associated with two physical characteristics of the rocks: fractures and interconnected porosity. Almost all of the transmissivity is derived from horizontal fracturing; however, only a few of the fractures present in the carbonate are transmissive. Some transmissivity is associated with a zone of fossiliferous, vuggy dolomite, which yields water from the rock matrix. Most of the transmissivity is associated with large fractures and solution crevices in the upper 30 feet of the bedrock; less transmissivity is associated with the deeper vuggy reef material, even where extensively fractured. Transmissivity of individual fractures and fossiliferous zones ranges from 300 to 27,000 feet squared per day. The aquifer bottom is defined by a lack of transmissive fractures and an increased shale content near the contact of the Silurian and Ordovician sections. Water-level data from the three wells indicate that flow is horizontal at well site 1 north of the Kankakee River, upward at well site 2 near the river, and downward at well site 3 south of the river. Most of the flow occurs in the upper part of the carbonate bedrock where fracturing and solution-enlarged crevices are most developed. Water levels indicate the the Kankakee River is a hydrologic boundary for the regional carbonate bedrock aquifer.  相似文献   

5.
ABSTRACT: As part of a larger model to identify lands suitable for acquisition, a water supply protection model was developed using the Southwest Florida Water Management District's GIS. Several hydrologic and hydrogeologic data layers were overlaid to develop maps showing ground-water supply suitability, protection areas for surface-water supply, protection areas for major public supply wells, susceptibility to ground-water contamination, and recharge to the Floridan aquifer. These intermediate layers were combined into a final map to prioritize protection areas for water supply.  相似文献   

6.
ABSTRACT: Most water-resouree investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature th determine energy and moisture balances, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.  相似文献   

7.
ABSTRACT: The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest.  相似文献   

8.
The Las Vegas, Nevada area like most semi-arid basins, was developed through exploitation of available ground-water resources. Area growth in this large valley has occurred in a scattered and sporadic manner with development both in incorporated areas and within the County. As a result, today there exist five major water suppliers which are: a water district, three municipalities, and a large corporation, in addition to numerous small water companies and thousands of domestic wells. In the past 20 years the area has grown from a population of less than 50,000 to over 300,000 today. The bulk of the water demand for this growth has been met from the ground-water resource and as a result the basin is being severely mined. Current extractions are over three times the estimated annual replenishment. Rapidly declining water levels are increasing the costs of water and are creating water shortages during periods of peak demand. To meet both the current and anticipated water demands, the Southern Nevada Water Supply Project is being constructed to import additional water from nearby Lake Mead. Agriculture in the area is very limited, and primarily uses reclaimed waste water for irrigation. The chief water demands in the area are thus municipal and industrial, with the former predominating. This study was designed to determine how best the Las Vegas Valley Water District, supplier of 80 percent of the domestic water, might integrate the use of the existing ground water and anticipated imported surface water. Additionally the consequences of application of certain provisions in the Nevada Water Law were examined to determine their effects on the ground-water system and costs of water. To achieve these objectives, a dynamic programming technique was utilized. The problem as formulated consists of a single decision variable, single state variable dynamic programming algorithm evaluated over a fifty-year planning horizon at monthly intervals. Three alternative solutions, with different ground-water law constraints are evaluated. In all solutions certain basic operating rules regarding ground-water pumping distribution and use of surface-water systems are kept constant. The problem is considered as deterministic in all respects. Recharge to ground water is assumed to equal the estimated average annual replenishment evenly distributed over the year and additionally is not considered to be a function of average basin ground water potential. The only surface supply, Lake Mead, is considered to operate at near constant elevation and not be subject to shortage conditions. In light of the size of Lake Mead, the Colorado River flow and the size of Nevada's allotment, 300,000 ac ft, the latter assumption is reasonable. Demand for water is considered as a known function of time. Optimization of conjunctive use for the Water District is based on the objective function of minimizing water production costs. Costs of distributing water are considered to be constant regardless of source, and so are not included. Also, fixed costs of amortizing the pipeline project and well fields are not considered. Results of the study are presented as a series of policy traces under each of the three alternatives considered. These traces describe the ground-water basin response under optimal operating conditions, given an estimate as to the present worth of ground-water pumping rights, and prescribe monthly water-procurement schedules for the operation of the Water District.  相似文献   

9.
ABSTRACT: An investigation to determine the relation between stream water quality and geohydrology in the Roberts Creek watershed, Clayton County, Iowa, was conducted during selected base-flow periods in 1988–90. Discharge measurements were made and water samples collected for analyses of nutrients and selected herbicides in 19 subbasins along the main stem and tributaries of Roberts Creek. The areal extent of unconsolidated and bedrock units subcropping in each subbasin was quantified. The hydrologic data were correlated statistically with the geologic data to determine relations. Roberts Creek generally gained water and had larger nitrogen concentrations in subbasins in which bess and alluvial material were underlain primarily by low-permeability till and shale units. Roberts Creek generally lost water and had lower nitrate concentrations in subbasins with subcroppmg karstic units. Nitrogen concentrations decreased in streams underlain by the karstic units because the nitrogen removed by biological processes was not replaced by ground-water inflow. Seepage from Roberts Creek to ground water in areas of subcropping karstic carbonate rocks reduced the flow, which reduced the velocity, causing increased residence time of water in the stream. The additional residence time may allow additional time for biological processes to remove nitrogen from solution. There was no significant relation between dissolved orthophosphate or atrazine and the underlying geology.  相似文献   

10.
Groundwater contamination by agricultural chemicals is a major environmental pollution issue nation-wide. The regulatory agencies of towns and counties face the problem of finding a methodology for assessing the ground-water contamination potential of a large number of agricultural pesticides. Because of the spatial nature of the problem and the limited data availability for comprehensive pesticide movement models, a contamination potential index was employed for preliminary assessment. A specially designed geographic information system was used to create ground-water contamination likelihood maps for a 1500 km2 area. The results suggest that this methodology can be used successfully for evaluating the relative contamination potential of a large number of pesticides over large areas with limited input data. A tentative approach for using this method for monitoring and registration of pesticides is also discussed.  相似文献   

11.
ABSTRACT: A significant water-resources problem in Florida and other coastal states where the ground-water resources are threatened by salt-water intrusion or direct pollution from septic tanks, canals or marinas, is the almost explosive urban development of the limited coastal zone without or with only little water related planning. The reported study deals with the establishment of methods for identification of areas which are suitable for development and of areas where complete preservation or controlled and limited development should be encouraged. A methodology using data input available from such federal and state agencies as the USGS, the U. S. Weather Bureau, and the various State Geological Surveys is developed and brought on a graphic form that will guide the planning process and allow the urban planner even without a background in geohydrology or water-resources engineering to identify the problem areas.  相似文献   

12.
ABSTRACT: Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.  相似文献   

13.
ABSTRACT: Irrigation development of the dolomite aquifer in eastera Kankakee and northern Iroquois Counties, Illinois, is extensive and increasing. Interruptions of domestic supplies have been reported with increasing frequency during the 1980's. To address this issue, a regional assessment of the ground-water resources of the region was conducted in 1987 and 1988. Options for managing the dolomite aquifer were also investigated. Hydrogeology of the dolomite aquifer was determined using five aquifer tests. Tranamissivity values of the dolomite aquifer ranged from 14,000 to 50,000 gpd/ft (168 to 600 m3/m/day). Storage coefficients were between 0.0001 and 0.0002, within the range of a confined (artesian) aquifer. Based on flow-net analyses, recharge of the dolomite aquifer ranged from 85,000 to 285,000 gpd/mi2 (124.4 to 417.0 m3/day/km2). Water levels of the dolomite aquifer were mapped during five periods in 1987 and 1988 by measuring up to 226 wells completed in the dolomite aquifer. Maximum regional water-level declines because of irrigation pumpage were 44 feet (13.4 m) in 1987 and 72 feet (21.9 m) during the drought of 1988. Based on ground-water use data, precipitation records, and hydrogeologic information, the magnitude of water-level declines can be attributed more to differing hydrogeologic conditions than to pumpage or climatic changes. Existing ground-water management methods for resolving conflicts over the ground-water resources of the study area are reviewed and alternative management options explored.  相似文献   

14.
Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.  相似文献   

15.
ABSTRACT: The Palmer Drought Severity Index (PDSI) is perhaps the most widely used regional drought index. However, there is considerable ambiguity about its value as a measure of hydrologic drought. In this paper the PDSI for climatic divisions in New Jersey is compared to the occurrence within each climatic division of streamflows in their lower quartile for the month (streamflow index), and ground-water levels in their lower quartile for the month (ground-water index). These indices are found to have distinct properties. It is not uncommon for PDSI values to indicate “severe” or “extreme” drought at times when the streamflow or groundwater index is above its lower quartile at many stations within the climatic division. The PDSI values and groundwater index indicate more persistent subnormal conditions than the streamflow index for truncation levels yielding the same total duration of drought over a period. The ground-water index tends to indicate a later beginning to droughts and of the three indices is the most conservative indicator of a drought's end. Drought timing and duration properties for the ground-water index are found to be highly influenced by the average depth to water in the well. Overall, the three indices of drought can provide three very different characterizations of drought. In particular, the results indicate that considerable caution should be exercised in drawing conclusions about hydrologic drought from the PDSI.  相似文献   

16.
ABSTRACT: A study was conducted over a six-year period in East-Central Ohio to determine the effects of surface mining and reclamation on physical watershed conditions and on ground-water hydrology in three ground-water zones in three small experimental watersheds. Mining disturbances in watersheds adjacent to the experimental sites affected ground-water levels in the undisturbed experimental watersheds prior to actual mining in the experimental sites. New subsurface flow paths, with different characteristics, formed during mining and reclamation. At all three sites mining dewatered the saturated zone above the underclay of the mined coal seam. Mining and reclamation affected ground-water levels below the mined coal seam in the middle and lower zones within at least two sites. Ground-water level recovery in the mined upper saturated zone was slow and irregular both temporally and spatially after reclamation. Hydraulic conductivities of postmining (Phase 3) spoil were generally greater than those of Phase 1 bedrock, but wide spatial variability was observed. Modelers need to be aware of the complexities of new flow paths and physical characteristics of subsurface flow media that are introduced by mining and reclamation, including destruction of the upper-zone clay.  相似文献   

17.
ABSTRACT: In urbanizing areas, the usual increase in flood flows also increases erosional capability of streams. In order to evaluate such tendencies quantitatively, 25 stream reaches were studied, and were classified as to whether erosion of the channel and banks was light, medium, or heavy. Analysis of characteristics indicated that (1) densely developed areas are correlated with greater erosion, (2) wide stream buffers of natural vegetation are correlated with lesser erosion, and (3) there is no definite correlation of erosion to slope or characteristics of soil. Erosional stream instability can be avoided by retention of storm water runoff, creating additional channel roughness or reducing channel slope during floods by drop structures, such as culverts, which restrict flow. Channel straightening and general bank protection should be minimized in such streams. Design of culverts should take such effects into consideration.  相似文献   

18.
A field plot experiment was conducted in the Palestinian Autonomous Areas to study the effect of stonewalled terracing on soil and water conservation as compared to the nonterraced areas. Effects of the wheat canopy were considered as a second treatment. The experiment was undertaken over a period of two seasons (2000 and 2001). The results of the experiment found that the mean soil erosion was significantly lower (P < 0.05) in the terraced plots than in those that were nonterraced (182 kg/ha and 3525 kg/ha during the first season, 1769 kg/ha and 5057 kg/ha during the second season for terraced and nonterraced plots, respectively). A similar trend was observed with respect to runoff in areas under the same treatments. The wheat canopy showed lower, but not significant runoff and erosion in most of the cases for both seasons. Due to better soil and water conservation, the terraced plots obtained significantly higher total plant dry matter than nonterraced plots (1570 and 630 kg/ha in 2000, 2545 and 889 kg/ha in 2001 for terraced and nonterraced treatment, respectively). The runoff coefficient was 20% and 4% for the nonterraced and terraced plots, respectively. Rainstorms with intensity ≥4 mm/hand rainfall ≥10 mm are more likely to cause runoff and erosion.  相似文献   

19.
ABSTRACT: This paper explores some of the advances of the boundary element method, as applied to ground-water problems, during the last five years. Although the method is still somewhat limited compared to solution by finite elements, the range of solutions has increased considerably. Diffusion and advection-diffusion solutions are done efficiently. These include the incorporation of inhomogeneity, anisotropy, and nonlinear diffusion. The difficult problem of stream-aquifer interaction is an important application as it is much easier to follow a free surface with its multiple configurations. The application must be able to cycle between ground-water connection and disconnection with the stream and include seepage surfaces. Flow in fractured media is a natural application where the flow in fractures can usually be treated without a computational exception in spite of extremely high aspect ratios. The case of seawater intrusion forms a type of free surface problem and thus is a case for which the method has special advantages. For these and other applications the boundary element method provides an inexpensive technique for calculation where the data preparation and setup time is minimal. In most of these cases, programs can and have been written on microcomputers.  相似文献   

20.
Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-K?prü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-K?prü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号