首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Human disturbance in the western Mojave Desert takes many forms. The most pervasive are livestock grazing and off-highway vehicle use. Over the past few decades several areas within this region have been fenced to preclude human disturbance. These areas provide opportunities to study the impact of human activities in a desert ecosystem. This paper documents the response of plant and small mammal populations to fencing constructed between 1978 and 1979 at the Desert Tortoise Research Natural Area, Kern County, California. Aboveground live annual plant biomass was generally greater inside than outside the fenced plots during April 1990, 1991, and 1992. The alien grassSchismus barbatus was a notable exception, producing more biomass in the unprotected area. Forb biomass was greater than that of alien annual grasses inside the fence during all three years of the study. Outside the fence, forb biomass was significantly higher than that of alien grasses only during spring 1992. Percent cover of perennial shrubs was higher inside the fence than outside, while no significant trend was detected in density. There was als more seed biomass inside the fence; this may have contributed to the greater diversity and density of Merriam's kangaroo rats (Dipodomys merriami), long-tailed pocket mice (Chaetodipus formosus), and southern grasshopper mice (Onychomys torridus) in the protected area. These results show that protection from human disturbance has many benefits, including greater overall community biomass and diversity. The significance and generality of these results can be further tested by studying other exclosures of varying age and configurations in different desert regions of the southwestern United States.  相似文献   

2.
Abstract: Streams draining mountain headwater areas of the western Mojave Desert are commonly physically isolated from downstream hydrologic systems such as springs, playa lakes, wetlands, or larger streams and rivers by stream reaches that are dry much of the time. The physical isolation of surface flow in these streams may be broken for brief periods after rainfall or snowmelt when runoff is sufficient to allow flow along the entire stream reach. Despite the physical isolation of surface flow in these streams, they are an integral part of the hydrologic cycle. Water infiltrated from headwater streams moves through the unsaturated zone to recharge the underlying ground‐water system and eventually discharges to support springs, streamflow, isolated wetlands, or native vegetation. Water movement through thick unsaturated zones may require several hundred years and subsequent movement through the underlying ground‐water systems may require many thousands of years – contributing to the temporal isolation of mountain headwater streams.  相似文献   

3.
The Western Forest Complex (WEFCOM) of Thailand is comprised of many protected areas and has one of the highest wildlife populations in the country. Populations of wildlife in the WEFCOM have decreased dramatically over recent years. Rapid economic development has resulted in the conversion of forest into agricultural and pastoral land, which has directly and indirectly impacted the wildlife community. This research aimed to evaluate populations of domesticated cattle (Bos indicus) and buffalo (Bubalus bubalis) in the WEFCOM and their possible impacts on the wildlife community. Domesticated cattle and buffalo keepers from 1561 (or 3.3%) of houses in and near WEFCOM were interviewed. The average number of animals per household was 15.6 cattle and 8.5 buffalo. Most villagers released domesticated cattle and buffalo to forage in the protected areas. This tended to have a high impact on the wildlife community in Huai Kha Khaeng Wildlife Sanctuary and Tungyai Naresuan Wildlife Sanctuary. The least impacted areas were Luam Khlong Ngu National Park, Thong Pha Phum National Park and Chaleam Ratanakosin National Park. With a high risk to the wildlife community, law enforcement should be used in combination with a certain level of co-management with local communities.  相似文献   

4.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号