首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu Si  Hong Ji  Xiaohong Zeng 《Safety Science》2012,50(7):1452-1461
The hazardous chemical accidents remain a matter of major concern. However, there is a dearth of practical measures about the emergency management of hazardous chemicals leakage. Therefore, in order to provide more accurate management plan, quantitative risk assessment has become a critical issue in chemical industry. The main aim of this study is to quantify the risk of hazardous chemicals leakage, and take precautions against the accidents. In this study, a Fire-Explosion-Poisoning Quantitative Probability Model (FEPQPM) has been established. The paper introduced the probability analysis methods to analyze derivative accidents caused by hazardous chemicals leakage, established quantitative risk assessment models, and made acceptable risk level analysis. This model has been applied to quantitatively assess an enterprise’s storage tank at Changshou Chemical Industrial Distripark (CID) in Chongqing, China. Evaluation results are in line with the actual situation of the CID. It is shown that the probability of poisoning is very large, causing more economic loss than the other two types of accidents, and death toll of leakage accident increases over time, resulting in greater economic losses. The risk level of leakage accident involving poisoning is unacceptable.  相似文献   

2.
Human urge of exploiting earth resources has resulted into unprecedented industrial development in the last century resulting into production of large quantities of hazardous chemicals. Chemical, petrochemical, nuclear, biomedical and pharmaceutical industrial accidents release large quantities of hazardous chemicals into the atmosphere. The accidental discharge during production or storage or transportation have subjected the population to be exposed to exceptionally high concentration levels of hazardous chemicals, taking them by surprise, unprepared with fatal consequences. An emergency planning organization has to be trained to combat this situation in the shortest possible time to minimize the number of causalities. The present paper focuses on computation of dispersion model, using emission source, accident location and online metrological data near to the sources, to provide necessary and accurate results swiftly. The predicted ground level concentrations with the hazardous nature of the chemical, speed and direction of plume, the emergency team will be supplied with all the information in graphical easy to grasp form, superimposed over a GIS map or the latest satellite image of the area.

The emergency team has to be trained for all past scenarios and their preparedness, response and actions must be practiced regularly to be able to abate chemical releases accidentally or intentionally.

Accidental releases of chlorine and ammonia gases in residential and industrial areas are simulated. The predicted ground level concentrations in the effected areas are shown after different time intervals. For low vapor pressure chemical, the dispersion time is large and concentration levels are low but persist for prolonged time while for volatile chemical, the concentrations are high in short time and recovering to safe environment is quick.  相似文献   


3.
Within the context of a quantitative risk analysis (QRA), the two main constituents used to describe petrochemical risks are, and have always been, consequence and probability. The consequences of hazardous material accidents are easy to apprehend – if a hazard is realized it can injure people or cause fatalities, damage equipment or other assets, or cause environmental damage. Frequencies for these consequences, on the other hand, are not as easy to understand. Process safety professionals develop event frequencies by evaluating historical data and calculating incident rates, which represent, in the QRA context, how often a release of a hazardous material has occurred. Incident rates are further modified by probabilities for various hole sizes, release orientations, weather conditions, ignition timing, and other factors, to arrive at unique event probabilities that are applied in the QRA. This paper describes the development of incident rates from historical database information for various equipment types, as well as defining a methodology for assigning hole size probabilities from the same data, such that a hole size distribution can be assigned within each QRA study. The combination of total incident rates and a hole size distribution relationship can then serve as a foundation within the frequency side of many QRA studies.  相似文献   

4.
Liquefied natural gas (LNG) has been largely indicated as a promising alternative solution for the transportation and storage of natural gas. In the case of accidental release on the ground, a pool fire scenario may occur. Despite the relevance of this accident, due to its likelihood and potential to trigger domino effects, accurate analyses addressing the characterization of pool fires of LNG are still missing.In this work, the fire dynamic simulator (FDS) has been adopted for the evaluation of the effects of the released amount of fuel and its composition (methane, ethane, and propane), on the thermal and chemical properties of small-scale LNG pool fire. More specifically, the heat release rate, the burning rate, the flame height, and thermal radiation, at different initial conditions, have been evaluated for pool having diameter smaller than 10 m. Safety distances have been calculated for all the investigated conditions, as well.Results have also been compared with data and correlations retrieved from the current literature. The equation of Thomas seems to work properly for the definition of the height over diameter ratio of the LNG pool fire for all the mixture and the investigated diameters.The addition of ethane and propane significantly affects the obtained results, especially in terms of radiative thermal radiation peaks, thus indicating the inadequacy of the commonly adopted assumption of pure methane as single, surrogate species for the LNG mixture.  相似文献   

5.
Toxic gas leakage in a tank area can have catastrophic consequences. Storage tank leakage location (particularly for high leakage) and downwind storage tanks potentially influence gas diffusion in tank areas. In this study, we developed a numerical and experimental method to investigate the impact of a high leakage location and downwind storage tank on gas diffusion based on three (1.05H, 0.90H, and 0.77H, H was the tank height, 22m) leakage field experiments on the leeward side of storage tank, which have been not conducted before. The experiments revealed an unexpected phenomenon: the maximum ground concentration first decreased and then increased with increasing leakage height. The simulations illustrated that the differences in micrometeorological conditions caused the maximum ground concentration of gas emitted from the roof to be higher than that emitted from the tank wall near the storage tank height. The downwind storage tank 1) had little influence on the entire diffusion direction but altered the local diffusion pattern; 2) reduced the maximum ground concentration (∼18.7%) and the distance from the emission source (approximately a storage tank diameter); and 3) had strong influences on the concentration, velocity, turbulence, and pressure on the leeward side. The concentration negatively correlated with the velocity, pressure, and turbulence in the middle of the two storage tanks on wind centerline. Our results can improve understanding of gas dispersion in tank areas and provide references for mitigating loss and protecting lives during emergency response processes.  相似文献   

6.
Chemical Process Industries usually contain a diverse inventory of hazardous chemicals and complex systems required to perform process operations such as storage, separation, reaction, compression etc. The complex interactions between the equipment make them vulnerable to catastrophic accidents. Risk and failure assessment provide engineers with an intuitive tool for decision making in the operation of such plants. Abnormal events and near-miss situations occur regularly during the operation of a system. Accident Sequence Precursors (ASP) can be used to demonstrate the real-time operating condition of a plant. Dynamic Failure Assessment (DFA) methodology is based on Bayesian statistical methods incorporates ASP data to revise the generic failure probabilities of the systems during its operational lifetime.In this paper, DFA methodology is applied on an ammonia storage unit in a specialized chemical industry. Ammonia is stored in cold storage tanks as liquefied gas at atmospheric pressure. These tanks are susceptible to failures due to various abnormal conditions arising due process failures.Tank failures due to three such abnormal conditions are considered. Variation of the failure probability of the safety systems is demonstrated. The authors use ASP data collected from plant specific sources and safety expert judgement. The failure probabilities of some safety systems concerned show considerable deviation from the generic values. The method helps to locate the components which have undergone more degradation over the period and hence must be paid attention to. In addition, a Bayesian predictive model has been used to predict the number of abnormal events in the next time interval. The user-friendly and intuitive nature of the tool makes it appropriate for application in safety assessment reports in process industries.  相似文献   

7.
To simplify quantitative risk analysis, the initiating events leading to loss of containment are normally described using generic hypotheses. For example, the following hypothesis is applied to the loss of containment from a storage tank: instantaneous release of the complete inventory, continuous release of the complete inventory in 10 min, and continuous release from a hole with a diameter of 10 mm. Once the initiating events have been specified, the corresponding event trees must be drawn to establish the sequences from each initiating event to the diverse final outcomes or accident scenarios, which will depend on the properties of the released material or on other specific factors. In this paper we propose, in a systematic way, a set of short generic event trees for the main loss of containment scenarios involving different types of hazardous materials. Even though most of them have been taken from the literature (BEVI Reference Manual), we have modified some of them, added the corresponding intermediate probabilities (immediate ignition, delayed ignition, flame front acceleration, etc.) obtained from a literature review and expert judgment, and associated the use of each event tree to the hazardous properties of the material (flammability, volatility and toxicity) and to its category according to EC labeling directives.  相似文献   

8.
Dynamic risk assessment using failure assessment and Bayesian theory   总被引:1,自引:0,他引:1  
To ensure the safety of a process system, engineers use different methods to identify the potential hazards that may cause severe consequences. One of the most popular methods used is quantitative risk assessment (QRA) which quantifies the risk associated with a particular process activity. One of QRA's major disadvantages is its inability to update risk during the life of a process. As the process operates, abnormal events will result in incidents and near misses. These events are often called accident precursors. A conventional QRA process is unable to use the accident precursor information to revise the risk profile. To overcome this, a methodology has been proposed based on the work of Meel and Seider (2006). Similar to Meel and Seider (2006) work, this methodology uses Bayesian theory to update the likelihood of the event occurrence and also failure probability of the safety system. In this paper the proposed methodology is outlined and its application is demonstrated using a simple case study. First, potential accident scenarios are identified and represented in terms of an event tree, next, using the event tree and available failure data end-state probabilities are estimated. Subsequently, using the available accident precursor data, safety system failure likelihood and event tree end-state probabilities are revised. The methodology has been simulated using deterministic (point value) as well as probabilistic approach. This Methodology is applied to a case study demonstrating a storage tank containing highly hazardous chemicals. The comparison between conventional QRA and the results from dynamic failure assessment approach shows the significant deviation in system failure frequency throughout the life time of the process unit.  相似文献   

9.
国外已经对火电厂的安全评价工作进行了一定的研究,但是国内对此项工作的研究还是比较匮乏,尤其对火电厂危险化学品更缺乏相关的安全评价方法及研究。在火力发电厂实际生产中,需使用到大量易燃、易爆危险化学品,由于使用、存储不当,极易造成重大事故。根据某火电厂实际情况,结合安全评价的基本程序,运用道(DOW)化学火灾、爆炸危险指数评价法对火电机组氢冷系统(GRH)单元进行了评价。结果显示,GRH单元的本质危险性很大,经过安全措施补偿后危险性较轻,说明利用道氏法对火电厂危险化学品使用状况进行评价,能够比较准确地反映被评价单位的实际情况,根据评价结果和存在的问题提出有针对性的对策措施,进一步改善火电机组运行环境的安全。评价结果可为火电厂提高安全管理水平提供有价值的参考。  相似文献   

10.
The aim of this article is to summarize the safety and security aspects of storing of Liquefied Natural Gas (LNG) as a potential alternative fuel. The contribution deals with possible scenarios of accidents associated with LNG storage facilities and with a methodology for the assessment of vulnerability of such facilities. The protection of LNG storage facilities as element of critical infrastructure should also be a matter of interest to the state. The study presents the results of determination of hazardous zones around LNG facilities in the event of various sorts of release. For calculations, the programs ALOHA, EFFECTS and TerEx were used and results obtained were compared. Scenarios modelled within this study represent a possible approach to the preliminary assessment of risk that should be verified by more detailed modelling (CFD). These scenarios can also be used for a quick estimation of areas endangered by an incident or accident. The results of modelling of the hazardous zones contribute to a reduction in risk of major accidents associated with these potential alternative energy sources.  相似文献   

11.
This paper provides comprehensive analysis on the lightning protection scenarios in 48 communication and broadcasting towers situated in similar isokeraunic contours in Sri Lanka at 79°–81° East and 5°–10° North. The investigation has been conducted to study the hazardous environment created on the tower and in the neighbourhood in the event of a lightning strike to the tower. The results show that a direct strike to an antenna structure in a metallic tower is rare irrespective of the presence of an air-termination or a down conductor. However, side flashing or arcing to antenna structures is highly possible once the air-termination and/or down conductor is installed and attempts are made to insulate the system from the tower. The outcome also shows that equipotential bonding of the grounding system, a distributed grounding network including a ring conductor and a suitable system of surge protective devices play a much vital role in lightning protection of equipment and safety of people compared to the effects of simply achieving a low grounding resistance. However, in the absence of such integrated, distributed and equipotentialized grounding system, a high value of ground resistance will sharply increase the possibility of accidents and damage. Considering the observations of the investigations into account we have designed a concrete embedded grounding system for tower sites at problematic locations. Finally, the scenarios for safety management at telecommunication tower sites have been discussed.  相似文献   

12.
13.
为提高危化品爆炸事故电力应急预警的准确性,建立基于贝叶斯网络的危化品爆炸事故电力系统风险评估模型.基于危化品爆炸事故电力应急典型情景分析,建立综合考虑突发事件、承灾载体和应急管理等风险因素的贝叶斯网络结构.应用概率刻画风险因素信息的不确定性及其相互影响,定量分析事件后果.结合一般条件和典型情景等的应用实例,分析评价方法...  相似文献   

14.
由液体和气体泄漏引发的喷射火灾事故屡见不鲜,而现有的喷射火模型却有诸多缺陷。将喷射火形状近似为圆锥,鉴于液体和气体的泄漏速度随压强和温度均有变化、点源离地面会有一定高度、风速对火焰倾角也有影响、圆锥喷射中心线上每个点源对目标的热辐射均不同等实际情况,新建液体和气体扩展半径的计算方法,引入风速对火焰高度和火焰偏角的作用,比较AGA法和Thornton模型,发现AGA法更加符合实际,再利用微积分原理建立三维点源喷射火模型,展示火焰形状对目标的影响,从而得出热辐射的最终危险性。最后以LPG和CNG储罐喷射火事故为例进行对比验证,首次模拟出喷射火的形状,更清晰准确地展示了目标入射热辐射通量随目标点位置的变化和危险范围,可为火焰阵面处的消防安全决策提供参考。  相似文献   

15.
Now in Russian Federation and other countries large-scale oil terminals (volume of one tank exceeds 100 000 m3, total volume of tanks exceeds 300 000 m3) are designed and constructed. Therefore fire safety of such objects becomes a very important task, solution of which is hardly possible without detail fire risk assessment. This study is aimed to a solution of this problem. Potential, individual and social risks were calculated. The potential risk was defined as a frequency of occurrence of hazardous factors of fires and explosions in a given point of space (the so-called risk contours). The individual risk was defined as a frequency of injuring a given person by hazardous factors of fires and explosions. Time of presence of this person in hazardous zones (near the hazardous installation) is taken into account during calculations of the individual risk. Social risk was defined as a dependence of frequency of injuring a given number of people by hazardous factors of fires and explosions on this number. In practice the social risk is usually determined on injuring not less than 10 people.

The oil terminal under consideration includes the following main parts: crude oil storage consisting of three tanks of volume 100 000 m3 each, input crude oil pipeline of diameter 0.6 m, crude oil pumps, output crude oil pipeline of diameter 0.8 m, auxiliary buildings and facilities. The following main scenarios of tank fires have been considered: rim seal fire, pool fire on a surface of a floating roof, pool fire on a total cross-section surface of the tank, pool fire in a dyke, explosions in closed or semiclosed volumes. Fires and explosions in other parts of the terminal are also taken into account. Effects of escalation of accidents are considered.

Risk contours have been calculated both for the territory of the terminal and for the neighbouring space. The potential risk for the storage zone is near 10−4–10−5 year−1, and at a distance 500 m from the terminal the potential risk values do not exceed 10−6 year−1. The values of the individual risk for various categories of workers are in the range of 10−5–10−6 year−1. Because of low number of the workers on the terminal and large distances to towns and villages the social risk value is negligible. These risk values are consistent with practice of the best oil companies, and fire hazard level of the terminal can be accepted as tolerable.  相似文献   


16.
Obtaining accurate thermal risk assessment parameters of chemical processes and substance properties is essential for improving the safety of chemical production and substance use and storage, and the adiabatic reaction calorimeter (ARC) has been employed by many researchers for this purpose. However, with the improvement and upgrading of the instrument, an examination of the factors that affect its detection accuracy is warranted. A simplified reaction model of the adiabatic thermal decomposition of tert-butyl peroxyacetate was constructed using computational fluid dynamics in which the adiabatic thermal decomposition kinetic model and fluid-solid coupling model were combined to simulate heat transfer. To verify the reliability of the parameters of the numerical calculation model, the effects of the sample cell's material, wall thickness, and mass were investigated in relation to the thermal inertia of the ARC. The results indicated that the thermal inertia of the system was lowest when the sample cell was composed of titanium. When the sample pool's composition is determined, the thermal inertia of the system can be reduced to a certain extent through an approximate increase in the sample mass. Finally, an analysis of the heat flow cloud diagram of the wall of sample pools made from different materials revealed that the thermal conductivity of titanium was high; this information can assist in controlling the adiabatic process.  相似文献   

17.
There has been an increase in the development and deployment of battery energy storage systems (BESS) in recent years. In particular, BESS using lithium-ion batteries have been prevalent, which is mainly due to their power density, performance, and economical aspects. BESS have been increasingly used in residential, commercial, industrial, and utility applications for peak shaving or grid support. As the number of installed systems is increasing, the industry has also been observing more field failures that resulted in fires and explosions. Lithium-ion batteries contain flammable electrolytes, which can create unique hazards when the battery cell becomes compromised and enters thermal runaway. The initiating event is frequently a short circuit which may be a result of overcharging, overheating, or mechanical abuse. During the exothermic reaction process (i.e., thermal runaway), large amounts of flammable and potentially toxic battery gas will be generated. The released gas largely contains hydrogen, which is highly flammable under a wide range of conditions. This may create an explosive atmosphere in the battery room or storage container. As a result, a number of the recent incidents resulted in significant consequences highlighting the difficulties on how to safely deal with the hazard. This paper identifies fire and explosion hazards that exist in commercial/industrial BESS applications and presents mitigation measures. Common threats, barriers, and consequences are conceptually shown and how they would be identified in a hazard mitigation analysis (HMA). Mitigation measures that can be implemented to reduce the risk of a fire or an explosion are discussed. The presented information is intended to provide practical information to professionals and authorities in this fairly new industry to assure that prevention and mitigation strategies can be effectively implemented and that the regulatory requirement of the HMA can be met.  相似文献   

18.
Quantification of inherent safety aspects of the Dow indices   总被引:3,自引:0,他引:3  
The Dow fire and explosion index (F&EI) and chemical exposure index (CEI) have been successfully implemented in a Visual Basic environment as a tool for the inherent safety assessment of chemical processes. Subprograms were developed to quantify the inherent safety aspects of the Dow indices. These aspects are presented graphically with the indices on the vertical axis and an inherent safety indicator on the horizontal axis. Dow indices of the MIC storage unit involved in the Bhopal disaster were evaluated to quantify the effects of process temperature, pressure and inventory of hazardous materials on the index values.

As operating pressure was reduced, the F&EI decreased in accordance with the principles of inherent safety. The change in F&EI due to reduction of inventory was more significant than that resulting from pressure reduction. The results show that the F&EI change, given the same range of the independent variables (quantity of hazardous materials, operating temperature and pressure), is larger when a unit in the process area is evaluated compared to a unit in a storage area (tank farm). Reduction of the inventory of hazardous materials had no direct effect on the CEI for vapor releases, whereas the size of the hole diameter impacted the CEI to a great extent. However, there is a significant change in the CEI as the inventory of materials decreases for liquid releases involving temperatures above their flash and boiling points. Pressure reduction decreases the CEI, whereas temperature reduction leads to an increase in the CEI when these parameters are treated independently.  相似文献   


19.
Around 15:00 GMT on August 4th, an explosion occurred in the warehouse facility storing Ammonium Nitrate (AN) at Beirut port, Lebanon. The explosion resulted in more than 178 fatalities and injured more than 6500 people, and also left an estimated 300,000 people homeless and registered as an equivalent to a 3.3 magnitude earth quake. The accident was considered to be the largest of its kind and the most severe anthropological disaster of the decade, the financial loss the nation was subjected to post the explosion was estimated to be around $ 15 billion as informed by the governor. The storage conditions of ammonium nitrate at Beirut port is not definitively known to anyone, and there is no documentation provided so far from the authorities regarding the same. This work focuses on the investigation & consequence analysis of the explosion using TNT equivalent approach. The overpressure and the impulse obtained from TNT calculations are used in probit models to assess the damages caused on human beings and structures. The results obtained in this investigative approach are then utilized to provide an analytical inference relative to the damage proxy map reported by the advance rapid imaging analysis team from NASA. Also, this work examines the existing standards, fire safety measures and legal regulations for ammonium nitrate facilities in the region. AN explosion during storage like other fire and explosion accidents are definitely preventable owing to the technological advancements and developments to prevent or extinguish controllable fires. The significance of this work relates to the methods for calculation of consequences of explosion that are happening due to the storage of highly hazardous explosive materials in excessive quantities and insists the necessity of incorporating adequate safety measures while storing such reactive and hazardous materials.  相似文献   

20.
为减小金属矿井热害对井下人员安全及井下开采工作的不利影响,需对井下热害进行评价和预测。基于文献调查和专家评价方法,结合工程实际,利用层次分析法构建金属矿井采矿热害评价体系,从生产能力、地质条件、矿井通风、地理环境四个方面提出17个评价指标。在分析层次分析法(AHP)确定权重不足的基础上,结合物元分析理论,建立确定金属矿井热害评价各因素权重的物元分析模型。在各评价因素权重确定的基础上,以BP神经网络作为评价工具,构建金属矿井热害综合评价预测模型。最后,以某矿山为例,进行评价和预测分析。结果表明,基于物元分析和AHP的BP深井网络评价模型预测误差最大只有3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号