首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

2.
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

3.
陈奇奇  徐明德 《化工环保》2014,34(4):348-351
采用二次缩合反应预处理高浓度酚醛树脂生产废水。一次反应的最佳工艺条件为:甲醛加入量0.010 0 mL/mL,Ba(OH)2加入量0.005 g/mL,反应时间3 h,反应温度85 ℃。最佳工艺条件下的一次反应COD去除率为 52.9%。二次反应中,当反应温度为80 ℃、反应时间为3 h、尿素加入量为3 g/L时,二次反应COD去除率最高,为31.5%。COD=85 000 mg/L、ρ(挥发酚)= 12 000 mg/L、ρ(甲醛)=6 740 mg/L的废水经两次缩合反应处理后,出水中COD=27 400 mg/L,COD的总去除率为67.8%;ρ(挥发酚)=2 400 mg/L,挥发酚的总去除率达80.0%;ρ(甲醛)= 980 mg/L,甲醛的总去除率达84.9%。处理1 t废水还可回收酚醛树脂6.75 kg。  相似文献   

4.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

5.
采用蔗糖作为共代谢基质与一体式好氧膜生物反应器(MBR)工艺相结合处理二甲基亚砜(DMSO)废水。考察了装置的污泥驯化效果、DMSO去除率、污泥的性能、HRT和冲击负荷对DMSO去除率的影响。试验结果表明:驯化第29天,DMSO去除率达98.5%,表明MBR内的污泥已驯化成功;在MBR运行的正式期,当DMSO处于高负荷状态时,DMSO去除率较低;随蔗糖加入量的增加,DMSO去除率逐渐提高,最终恢复到DMSO高负荷冲击前的DMSO去除效果;正常运行时,装置进水ρ(DMSO)=257~1 448 mg/L(平均值为718 mg/L)、出水ρ(DMSO)=6~22 mg/L(平均值为7 mg/L),DMSO去除率为96.4%~99.6%(平均值为98.9%);在MBR运行的正式期,污泥体积指数小于100 mL/g,表明污泥的沉降性能较好,MLVSS/MLSS较高,表明污泥的活性高,MBR内MLSS的平均值为5.52 g/L,MLVSS的平均值为4.78 g/L;MBR适宜的HRT为12 h。  相似文献   

6.
采用加载絮凝—超滤—反渗透组合工艺处理含大量重金属离子的印制电路板(PCB)电镀废水。考察了絮凝污泥回流比和水力条件对加载絮凝效果的影响,确定了最佳工艺参数:在加碱沉淀pH 10.5、混凝pH 9.0、PAC投加量10 mg/L、PAM投加量1.0 mg/L的条件下,污泥回流比为47%,加碱沉淀、混凝、絮凝的搅拌转速分别为250,150,50 r/min,搅拌时间分别为6,8,4 min。中试结果表明:经加载絮凝预处理后,总铜、总镍和浊度的平均去除率分别为99.4%、99.3%和93.1%;预处理出水经超滤—反渗透系统处理后,出水水质全部达标。  相似文献   

7.
李梦澜  李海青  李刚 《化工环保》2014,34(5):484-487
采用水热法制备了纳米α-MnO2催化剂,并通过XRD和SEM技术对催化剂的成分和形貌进行了表征。采用纳米α-MnO2催化剂催化臭氧氧化降解水中的双酚A(BPA),考察了初始溶液pH、催化剂加入量和反应温度对BPA去除率的影响。实验结果表明,纳米α-MnO2催化剂催化臭氧氧化降解BPA的最佳工艺条件为:催化剂加入量100 mg/L,初始溶液pH 8.5,反应温度18 ℃。在此最佳条件下处理质量浓度为10 μg/mL的BPA溶液120 min,BPA去除率为96.4%。回收洗涤后第二次使用的催化剂的BPA去除率为80.5%,第三次使用的催化剂的BPA去除率为74.1%,催化剂的活性随重复使用次数的增加而缓慢降低,活性较稳定。  相似文献   

8.
采用化学除油降黏—污泥调理—离心脱水工艺处理某炼油厂废水处理系统的混合污泥,并对工艺条件进行优化。实验结果表明,最佳的工艺条件为:化学除油降黏阶段处理体系的pH=4,反应温度35 ℃,H2O2加入量 2 g/L,m(H2O2)∶ m(Fe2+)=4,反应时间 60 min;污泥调理反应阶段的CaO加入量7.0 g/L;离心脱水阶段在分离因数为1 558时脱水5 min。在此条件下,得到的泥饼的含水率为70.0%~75.0%(w),含油率小于2%(w),污泥比阻约为3.0×107 s2/g。  相似文献   

9.
刘俊  曾旭  赵建夫 《化工环保》2017,37(1):106-109
采用NaOH强化催化湿式氧化的方法处理制药污泥,考察了各工艺条件对污泥VSS去除率和COD去除率的影响。实验结果表明,在NaOH加入量10 g/L、反应温度260 ℃、初始氧气压力1.0 MPa、反应时间60 min的最佳工艺条件下,污泥VSS去除率和 COD去除率分别达到95%和60%,VSS去除率较高,污泥减量化效果显著。NaOH强化催化湿式氧化反应处理制药污泥的机理是氢氧根在高温条件下促进了微生物细胞的水解,促使污泥固体组分分解转移到液相中,最终有机物被降解为小分子有机物、CO2和水。  相似文献   

10.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H2O2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60 ℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

11.
胡绍伟  王飞  陈鹏  王永  徐伟 《化工环保》2014,34(4):344-347
采用内电解—Fenton氧化—絮凝沉淀的化学集成技术预处理焦化废水,优化了各工段的运行参数。实验结果表明:在钢铁铁屑与活性炭的体积比为1∶1的条件下,内电解工段的优化参数为进水pH 2.6~3.1、HRT=1.0 h;Fenton氧化工段的优化参数为Fe2+加入量200 mg/L、H2O2加入量1 000 mg/L、进水pH 3.0左右、反应时间1.0 h;絮凝沉淀工段的设定参数为进水pH 9.5~10.0、聚丙烯酰胺加入量1 mg/L、静置沉降0.5 h。在上述工艺条件下,该集成技术对废水的总COD去除率大于55%,处理后的废水BOD5/COD大于0.28,不添加稀释新水即可进入后续生化处理系统。该工艺占地面积小、系统结构简单、易于工业化,废水预处理成本为4~5元/t。  相似文献   

12.
采用具有恒定pH功能的SBR接种厌氧氨氧化颗粒污泥,研究了pH对厌氧氨氧化菌脱氮效能的影响。实验结果表明:在进水ρ(氨氮)和ρ(亚硝酸盐氮)分别为58.00 mg/L和79.28 mg/L、TN容积负荷为0.82 kg/(m3·d)、不控制反应pH的条件下,随着反应的进行,pH不断升高,当pH=8.02时,菌种的去除效能最高;在进水ρ(氨氮)和ρ(亚硝酸盐氮)分别为120.00 mg/L和159.33 mg/L、TN容积负荷为1.62 kg/(m3·d)、恒定反应pH为8.00的条件下,反应4.0 h时的容积基质氮去除速率(NRR)达到1.42 kg/(m3·d),氨氮去除率达98.39%,亚硝酸盐氮去除率达99.48%;拟合曲线推导的最适pH的理论值为7.85,反应4.0 h时的NRR理论最大值达1.52 kg/(m3·d)。  相似文献   

13.
以FTO导电玻璃作为阳极、石墨电极作为阴极电解模拟甲基橙废水,优化了工艺条件,并对甲基橙的降解机理进行了初步探究。实验结果表明,在NaCl投加量5 g/L、电压8 V、废水pH 6、初始甲基橙质量浓度6.0 mg/L的优化条件下电解30 min,废水的脱色率达91.3%,COD降低了62%。机理研究结果表明,电解产生的羟基自由基与甲基橙发生氧化还原反应,破坏了甲基橙的显色基团,使其内部某些化学键发生断裂,从而达到脱色的目的。  相似文献   

14.
赵桦萍 《化工环保》2016,36(3):345-349
采用β-环糊精作为H2O2氧化茜素红褪色反应的增敏剂,建立了催化动力学光度法测定工业废水中Cr(Ⅵ)的新方法。该方法最佳反应条件为:反应体系总体积25 mL,0.1 mol/L的H2SO4溶液加入量2.0 mL,1.0×10-3 mol/L茜素红溶液加入量1.5 mL,30%的H2O2溶液加入量4.0 mL,100 g/L的β-环糊精溶液加入量3.0 mL。在最大吸收波长554 nm处测定反应前后溶液的吸光度,Cr(Ⅵ)的质量浓度与吸光度差值(ΔA)在4.0×10-4~5.4×10-2 mg/L范围内符合比尔定律,线性回归方程为:ΔA=18.52ρ+ 0.018,相关系数为0.996 6,检出限为3.5×10-4 mg/L,加标回收率为99.46%~101.3%,6次测定的相对标准偏差小于等于2.4%。该法的测定结果与GB/T 7467-1987中的二苯碳酰二肼分光光度法相近。  相似文献   

15.
选用重金属螯合剂TMT-15处理高含汞气田废水(COD=1 560 mg/L,SS=210 mg/L,pH=2.5~3.0,汞质量浓度为340 mg/L),考察了TMT-15投加量,废水pH,与氢氧化物、硫化物联用等因素对汞去除效果的影响,分析了TMT-15与汞的螯合产物的稳定性。实验结果表明:TMT-15能与汞强力螯合并沉淀,投加量低,pH适用范围广;絮凝剂聚合硫酸铝与TMT-15的联用可提高除汞效果,但作用有限;TMT-15与氢氧化物联用时的汞的去除效果提升显著,在氢氧化钠、三聚硫氰酸、汞元素的摩尔比为0.5:0.5:1和废水pH为3.0的条件下,汞去除率可达99.99%,剩余汞浓度低于GB 8978—1996中规定的汞排放浓度;螫合产物具有很高的热稳定性,且在较高浓度的酸碱环境中溶解率低,对环境造成二次污染的风险小。  相似文献   

16.
张雷  刘惠玲  王丽杰 《化工环保》2012,32(4):334-338
通过研究罐底油泥的理化性质,开发了适于处理罐底油泥的系列工艺:先采用调质技术提高罐底油泥流动性;再采用超声破乳降低油泥稳定性,改善油泥分离性能;最后采用卧式离心机对油泥进行离心分离处理.在复合型清洗剂加入量为800 mg/L、超声温度为60℃、超声功率为12 kW、超声时间为25 min、离心温度为60℃、絮凝剂加入量为600 mg/L、离心机转速为2200 r/min的条件下,系统稳定运行9d,离心机出口泥中含油率低于2.00%,水中悬浮固体质量浓度低于170 mg/L,达到了对罐底油泥进行除油的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号