首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed nitrous oxide (N2O) emissions at shoulder and foot-slope positions along three sloping sites (1.6–2.1%) to identify the factors controlling the spatial variations in emissions. The three sites received same amounts of total nitrogen (N) input at 170 kg N ha−1. Results showed that landscape positions had a significant, but not consistent effect on N2O fluxes with larger emission in the foot-slope at only one of the three sites. The effect of soil inorganic N (NH4+ + NO3) contents on N2O fluxes (r2 = 0.55, p < 0.001) was influenced by water-filled pore space (WFPS). Soil N2O fluxes were related to inorganic N at WFPS > 60% (r2 = 0.81, p < 0.001), and NH4+ contents at WFPS < 60% (r2 = 0.40, p < 0.01), respectively. Differences in WFPS between shoulder and foot-slope correlated linearly with differences in N2O fluxes (r2 = 0.45, p < 0.001). We conclude that spatial variations in N2O emission were regulated by the influence of hydrological processes on soil aeration intensity.  相似文献   

2.
Nitrogen deposition and its ecological impact in China: An overview   总被引:29,自引:0,他引:29  
Nitrogen (N) deposition is an important component in the global N cycle that has induced large impacts on the health and services of terrestrial and aquatic ecosystems worldwide. Anthropogenic reactive N (Nr) emissions to the atmosphere have increased dramatically in China due to rapid agricultural, industrial and urban development. Therefore increasing N deposition in China and its ecological impacts are of great concern since the 1980s. This paper synthesizes the data from various published papers to assess the status of the anthropogenic Nr emissions and N deposition as well as their impacts on different ecosystems, including empirical critical loads for different ecosystems. Research challenges and policy implications on atmospheric N pollution and deposition are also discussed. China urgently needs to establish national networks for N deposition monitoring and cross-site N addition experiments in grasslands, forests and aquatic ecosystems. Critical loads and modeling tools will be further used in Nr regulation.  相似文献   

3.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   

4.
The spatial variability of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO2 flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH4 fluxes was stronger than that of CO2 or N2O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N2O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N2O fluxes and emphasized the spatial variability.  相似文献   

5.
The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH3 deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH3 emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively.  相似文献   

6.
Intensive beef production has increased during recent decades in Brazil and may substantially increase both methane (CH4) and nitrous oxide (N2O) emissions from manure management. However, the quantification of these gases and methods for extrapolating them are scarce in Brazil. A case study examines CH4 and N2O emissions from one typical beef cattle feedlot manure management continuum in Brazil and the applicability of Manure-DNDC model in predicting these emissions for better understand fluxes and mitigation options. Measurements track CH4 and N2O emissions from manure excreted in one housing floor holding 21 animals for 78 days, stockpiled for 73 days and field spread (360 kg N ha?1). We found total emissions (CH4 + N2O) of 0.19 ± 0.10 kg CO2eq per kg of animal live weight gain; mostly coming from field application (73%), followed housing (25%) and storage (2%). The Manure-DNDC simulations were generally within the statistical deviation ranges of the field data, differing in ?28% in total emission. Large uncertainties in measurements showed the model was more accurate estimating the magnitude of gases emissions than replicate results at daily basis. Modeled results suggested increasing the frequency of manure removal from housing, splitting the field application and adopting no-tillage system is the most efficient management for reducing emissions from manure (up to about 75%). Since this work consists in the first assessment under Brazilian conditions, more and continuous field measurements are required for decreasing uncertainties and improving model validations. However, this paper reports promising results and scientific perceptions for the design of further integrated work on farm-scale measurements and Manure-DNDC model development for Brazilian conditions.  相似文献   

7.
8.
Increased reactive nitrogen (Nr) deposition due to expansion of agro-industry was investigated considering emission sources, atmospheric transport and chemical reactions. Measurements of the main inorganic nitrogen species (NO2, NH3, HNO3, and aerosol nitrate and ammonium) were made over a period of one year at six sites distributed across an area of ∼130,000 km2 in southeast Brazil. Oxidized species were estimated to account for ∼90% of dry deposited Nr, due to the region’s large emissions of nitrogen oxides from biomass burning and road transport. NO2-N was important closer to urban areas, however overall HNO3-N represented the largest component of dry deposited Nr. A simple mathematical modeling procedure was developed to enable estimates of total Nr dry deposition to be made from knowledge of NO2 concentrations. The technique, whose accuracy here ranged from <1% to 29%, provides a useful new tool for the mapping of reactive nitrogen deposition.  相似文献   

9.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

10.
We investigate the possibility to replace the – so-called – Tier 1 IPCC approach to estimate soil N2O emissions with stratified emissions factors that take into account both N-input and the spatial variability of the environmental conditions within the countries of the European Union, using the DNDC-Europe model. Spatial variability in model simulations is high and corresponds to the variability reported in literature for field data. Our results indicate that (a) much of the observed variability in N2O fluxes reflects the response of soils to external conditions, (b) it is likely that national inventories tend to overestimate the uncertainties in their estimated direct N2O emissions from arable soils; (c) on average over Europe, the fertilizer-induced emissions (FIE) coincide with the IPCC factors, but they display large spatial variations. Therefore, at scales of individual countries or smaller, a stratified approach considering fertilizer type, soil characteristics and climatic parameters is preferable.  相似文献   

11.
Simulation models are one of the approaches used to investigate greenhouse gas emissions and potential effects of global warming on terrestrial ecosystems. DayCent which is the daily time-step version of the CENTURY biogeochemical model, and DNDC (the DeNitrification–DeComposition model) were tested against observed nitrous oxide flux data from a field experiment on cut and extensively grazed pasture located at the Teagasc Oak Park Research Centre, Co. Carlow, Ireland. The soil was classified as a free draining sandy clay loam soil with a pH of 7.3 and a mean organic carbon and nitrogen content at 0–20 cm of 38 and 4.4 g kg?1 dry soil, respectively. The aims of this study were to validate DayCent and DNDC models for estimating N2O emissions from fertilized humid pasture, and to investigate the impacts of future climate change on N2O fluxes and biomass production. Measurements of N2O flux were carried out from November 2003 to November 2004 using static chambers. Three climate scenarios, a baseline of measured climatic data from the weather station at Carlow, and high and low temperature sensitivity scenarios predicted by the Community Climate Change Consortium For Ireland (C4I) based on the Hadley Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate Change (IPCC) A1B emission scenario were investigated. DayCent predicted cumulative N2O flux and biomass production under fertilized grass with relative deviations of +38% and (?23%) from the measured, respectively. However, DayCent performs poorly under the control plots, with flux relative deviation of (?57%) from the measured. Comparison between simulated and measured flux suggests that both DayCent model’s response to N fertilizer and simulated background flux need to be adjusted. DNDC overestimated the measured flux with relative deviations of +132 and +258% due to overestimation of the effects of SOC. DayCent, though requiring some calibration for Irish conditions, simulated N2O fluxes more consistently than did DNDC. We used DayCent to estimate future fluxes of N2O from this field. No significant differences were found between cumulative N2O flux under climate change and baseline conditions. However, above-ground grass biomass was significantly increased from the baseline of 33 t ha?1 to 45 (+34%) and 50 (+48%) t dry matter ha?1 for the low and high temperature sensitivity scenario respectively. The increase in above-ground grass biomass was mainly due to the overall effects of high precipitation, temperature and CO2 concentration. Our results indicate that because of high N demand by the vigorously growing grass, cumulative N2O flux is not projected to increase significantly under climate change, unless more N is applied. This was observed for both the high and low temperature sensitivity scenarios.  相似文献   

12.
Greenhouse gas emissions from hydroelectric dams have recently given rise to controversies about whether hydropower still provides clean energy. China has a large number of dams used for energy supply and irrigation, but few studies have been carried out on aquatic nitrous oxide (N2O) variation and its emissions in Chinese river-reservoir systems. In this study, N2O spatiotemporal variations were investigated monthly in two reservoirs along the Wujiang River, Southwest China, and the emission fluxes of N2O were estimated. N2O production in the reservoirs tended to be dominated by nitrification, according to the correlation between N2O and other parameters. N2O saturation in the surface water of the Wujiangdu reservoir ranged from 214% to 662%, with an average fluctuation of 388%, while in the Hongjiadu reservoir, it ranged from 201% to 484%, with an average fluctuation of 312%. The dissolved N2O in both reservoirs was over-saturated with respect to atmospheric equilibrium levels, suggesting that the reservoirs were net sources of N2O emissions to the atmosphere. The averaged N2O emission flux in the Wujiangdu reservoir was 0.64 μmol m?2 h?1, while it was 0.45 μmol m?2 h?1 in the Hongjiadu reservoir, indicating that these two reservoirs had moderate N2O emission fluxes as compared to other lakes in the world. Downstream water of the dams had quite high levels of N2O saturation, and the estimated annual N2O emissions from hydropower generation were 3.60 × 105 and 2.15 × 105 mol N2O for the Wujiangdu and the Hongjiadu reservoir, respectively. These fluxes were similar to the total N2O emissions from the reservoir surfaces, suggesting that water released from reservoirs would be another important way for N2O to diffuse into the atmosphere. It can be concluded that dam construction significantly changes the water environment, especially in terms of nutrient status and physicochemical conditions, which have obvious influences on the N2O spatiotemporal variations and emissions.  相似文献   

13.
Changes to agricultural management, particularly of the nitrogen (N) input to farms, have great potential for mitigating emissions of N containing gases, especially the greenhouse gas nitrous oxide (N2O). Manipulating diets fed to livestock is a potential method for controlling N excretion and emissions of greenhouse gases (GHG's) to the atmosphere. We selected three slurries derived from sheep that had been fed, either ensiled ryegrass (Lolium hybridicum), lucerne (Medicago sativa) or kale (Brassica oleracea) and applied them to a grassland soil from the UK in a laboratory experiment using a special He/O2 atmosphere incubation facility. The resulting fluxes of N2O, CH4 and N2 were measured, with the largest total N fluxes generated by the ryegrass slurry treatment (14.23 ryegrass, 10.84 lucerne, 13.88 kale and 4.40 kg N ha−1 from the control). Methane was emitted only from the ryegrass slurry treatment. The isotopomer signatures for N2O in the control and lucerne slurry treatments indicated that denitrification was the main process responsible for N2O emissions.  相似文献   

14.
In coastal Antarctica, freezing and thawing influence many physical, chemical and biological processes for ice-free tundra ecosystems, including the production of greenhouse gases (GHGs). In this study, penguin guanos and ornithogenic soil cores were collected from four penguin colonies and one seal colony in coastal Antarctica, and experimentally subjected to three freezing–thawing cycles (FTCs) under ambient air and under N2. We investigated the effects of FTCs on the emissions of three GHGs including nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). The GHG emission rates were extremely low in frozen penguin guanos or ornithogenic soils. However, there was a fast increase in the emission rates of three GHGs following thawing. During FTCs, cumulative N2O emissions from ornithogenic soils were greatly higher than those from penguin guanos under ambient air or under N2. The highest N2O cumulative emission of 138.24 μg N2O–N kg?1 was observed from seal colony soils. Cumulative CO2 and CH4 emissions from penguin guanos were one to three orders of magnitude higher than those from ornithogenic soils. The highest cumulative CO2 (433.0 mgCO2–C kg?1) and CH4 (2.9 mgCH4–C kg?1) emissions occurred in emperor penguin guanos. Penguin guano was a stronger emitter for CH4 and CO2 while ornithogenic soil was a stronger emitter for N2O during FTCs. CO2 and CH4 fluxes had a correlation with total organic carbon (TOC) and soil/guano moisture (Mc) in penguin guanos and ornithogenic soils. The specific CO2–C production rate (CO2–C/TOC) indicated that the bioavailability of TOC was markedly larger in penguin guanos than in ornithogenic soils during FTCs. This study showed that FTC-released organic C and N from sea animal excreta may play a significant role in FTC-related GHG emissions, which may account for a large proportion of annual fluxes from tundra ecosystems in coastal Antarctica.  相似文献   

15.
Land use conversion and fertilization have been widely reported to be important managements affecting the exchanges of greenhouse gases between soil and atmosphere. For comprehensive assessment of methane (CH4) and nitrous oxide (N2O) fluxes from hilly red soil induced by land use conversion and fertilization, a 14-month continuous field measurement was conducted on the newly converted citrus orchard plots with fertilization (OF) and without fertilization (ONF) and the conventional paddy plots with fertilization (PF) and without fertilization (PNF). Our results showed that land use conversion from paddy to orchard reduced the CH4 fluxes at the expense of increasing the N2O fluxes. Furthermore, fertilization significantly decreased the CH4 fluxes from paddy soils in the second stage after conversion, but it failed to affect the CH4 fluxes from orchard soils, whereas fertilizer applied to orchard and paddy increased soil N2O emissions by 68 and 113.9 %, respectively. Thus, cumulative CH4 emissions from the OF were 100 % lower, and N2O emissions were 421 % higher than those from the PF. Although cumulative N2O emissions were stimulated in the newly converted orchard, the strong reduction of CH4 led to lower global warming potentials (GWPs) as compared to the paddy. Besides, fertilization in orchard increased GWPs but decreased GWPs of paddy soils. In addition, measurement of soil moisture, temperature, dissolved carbon contents (DOCs), and ammonia (NH4 +-N) and nitrate (NO3 ?-N) contents indicated a significant variation in soil properties and contributed to variations in soil CH4 and N2O fluxes. Results of this study suggest that land use conversion from paddy to orchard would benefit for reconciling greenhouse gas mitigation and citrus orchard cultivation would be a better agricultural system in the hilly red soils in terms of greenhouse gas emission. Moreover, selected fertilizer rate applied to paddy would lead to lower GWPs of CH4 and N2O. Nevertheless, more field measurements from newly converted orchard are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.  相似文献   

16.
Nitrous oxide (N2O) is a trace gas contributing to stratospheric ozone depletion and global warming. Although a large quantity of information exists about N2O emissions from various ecosystems, this study was initiated to demonstrate the features of N2O emissions from sea-based waste disposal sites in Osaka City in relation to CH4 emissions.

Average N2O emissions at an active landfill (S-Site) were several times higher than those at a closed landfill (N Site). Average CH4 emissions were also much greater at the S-Site. Regarding the nature of N2O emissions, remarkable emissions often were observed with aerobic waste layers at the N-Site, suggesting almost inversely related N2O emissions with CH4 production at the N-Site. However, at the S-Site a few exceptionally high N2O emissions were noted in cases of high CH4 emissions.  相似文献   

17.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

18.
Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.  相似文献   

19.
Chamber techniques can easily be applied to field trials with multiple small plots measuring carbon- and nitrogen-trace gas fluxes. Nevertheless, such chamber measurements are usually made weekly and rarely more frequently than once daily. However, automatic chambers do allow flux measurements on sub-daily time scales. It has been hypothesized that sub-daily measurements provide more reliable results, as diurnal variations are captured better compared to manual measurements. To test this hypothesis we compared automatic and manual measurements of N2O, CO2 and CH4 fluxes from tilled and non-tilled plots of a rice–wheat rotation ecosystem over a non-waterlogged period. Our results suggest that both techniques, i.e., either manual or automatic chambers of N2O and CO2 emissions resulted in biased fluxes. The manual measurements were adequate to capture either day-to-day or seasonal dynamics of N2O, CO2 and CH4 exchanges, but overestimated the cumulative N2O and CO2 emissions by 18% and 31%, respectively. This was due to neglecting temperature-dependent diurnal variations of C and N trace gas fluxes. However, the automatic measurements underestimated the cumulative emissions of N2O and CO2 by 22% and 17%, respectively. This underestimation resulted from chamber effects upon soil moisture during rainfall processes. No significant difference was detected between the two methods in CH4 exchanges over the non-waterlogged soils. The bias of manual chambers may be significant when pronounced diurnal variations occur. The bias of automatic measurements can only be avoided/minimized if chamber positions are frequently changed and/or if chambers are automatically opened during rainfall events. We therefore recommend using automatic chambers together with continuous measurements of soil chamber moisture to allow for soil moisture correction of fluxes or to correct flux estimates as derived by manual chambers for possible diurnal variations.  相似文献   

20.
The relevance of indirect N2O emission is a controversial topic which is subject to much uncertainty. Only a small number of studies measure the indirect N2O emission at the interface from soil to stream. In addition, the majority of studies undertaken only cover a short-term period (<1 year). Therefore, limited information is available regarding the influence of seasonal or event effects, nor is there much information as to whether indirect N2O emissions are reflected by N2O in soil solutions. The present study aimed at clarifying these two questions along with the general relevance of dissolved nitrous oxide. A wetness gradient involving soil solutions of different soil types and surface waters within an N-saturated forest catchment (3.2 ha) was monitored over a period of 1 year. N2O concentrations in soil solutions (0.09–16.6 μg N l−1) were affected by events such as dry–wet cycles but did not reflect to the actual, indirect N2O emission at the soil-stream interface. It was assumed that N2O emission was due to N transformation processes. The N2O concentration at the spring was three times higher than the N2O concentrations in the soil solutions. Nevertheless, indirect N2O emission was still subordinate (<1%) to the direct emission of N2O. The weekly amount of indirect N2O emissions depended only on the stream flow rate (62% of the total annual amount). For this reason it was necessary to measure indirect N2O emission at short intervals and at the interface between soil and stream over a longer time period. Our results and the results of the reviewed studies show that the default IPCC emission factor (EF5-g=1.5%) overestimates the indirect N2O emission from ecosystems. The emission factor should therefore be lowered to about 0.1–0.3%. In addition, the results indicate that indirect N2O emission is an insignificant pathway in the N cycle of most ecosystems. However, final judgement will depend on long-term studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号