首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

2.
Adult Elasmopus rapax, collected from the eastern coast of Venezuela in 1990, were exposed to seawater containing various CdCl2 concentrations ranging from 0.25 to 5.5 mol l-1. The 48-h and 96-h LC50 values obtained were 4.0 and 1.6 mol Cd l-1, respectively. In amphipods exposed to 1 mol Cd l-1 for up to 240 h, the apparent rate of cadmium uptake was higher in dead animals (most of which had molted during the preceding 24 to 48 h) than in those which survived throughout the treatments without molting. Thus, whole-body cadmium content reached 1.74 mol g-1 dry weight (dw) in the former and only 0.85 mol g-1 dw in the latter; the higher body Cd-load may have caused the increased mortality observed in molters. On exposure to cadmium levels above 0.5 mol l-1 the oxygen consumption rate of non-molters decreased from 2.2 to about 1.5 ml O2 g-1 dw h-1 over the first 24 h, remaining unchanged thereafter. The results place E. rapax among the most sensitive marine organisms yet studied concerning cadmium toxicity, and emphasize the usefulness of the Amphipoda as bioindicators and research tools for bioassays.  相似文献   

3.
Six mediterranean macroalgae were cultivated for more than 2 yr under shade culture conditions, after which light requirements for growth were investigated at 16±2°C. The saturation light levels for growth in the logarithmic phase were related to the bathymetric distribution of the algae on the shore. The eulittoral to supralittoral red alga Bangia atropurpurea was saturated at a photon fluence rate of 71 mol photons m-2 s-1, the upper sublittoral to eulittoral brown algae Scytosiphon lomentaria, Colpomenia peregrina and Kuckuckia spinosa and the sublittoral brown alga Stictyosiphon soriferus at 39 to 71 mol photons m-2 s-1, and the deep-water alga Choristocarpus tenellus at 19 mol photons m-2 s-1. The minimum light requirements for growth of B. atropurpurea and C. tenellus were determined by observing length increase for 56 d under limiting light conditions. The compensation and minimum irradiances required for growth of B. atropurpurea were 0.5 and 1 mol photons m-2 s-1 respectively. The corresponding values for C. tenellus were 0.15 to 0.28 and 0.5 mol photons m-2 s-1 respectively. C. tenellus was the siowest-growing species tested at saturating light conditions, but it grew faster than B. atropurpurea at 1 mol photons m-2 s-1. Both B. atropurpurea and C. tenellus were able to survive 56 d in darkness, but only the latter grew under darkness in the first 14 d.  相似文献   

4.
Growth and photosynthetic properties of the marine dinoflagellate Amphidinium carterae Hulbert were examined under continuous illumination in batch cultures at four different irradiances between 2 and 150 E m-2 s-1. The slope of both cell- and Chl a-based photosynthesis versus the irradiance curves was greatest for cells grown at 15 E m-2 s-1. The relative Chl a values cell-1 were 1, 1.5 and 2 for cultures grown at 150, 80 and 15 E m-2 s-1, respectively. A low-temperature (-196°C) fluorescence technique was used to examine cells for photoinhibiton. Photoinhibition was greatest for cells grown at 150 E m-2 s-1. However, significant photoinhibition of this species was noted even at 80 E m-2 s-1. No significant difference in the fluorescence pattern was found between cells grown at 2 and 15 E m-2 s-1. Time course studies indicate that photoinhibition may occur within 2 h following exposure to 350 E m-2 s-1 in cells grown at 15 E m-2 s-1 and is reversible when light levels are lowered within 4 h. The ecological significance of phytoplankton unable to cope with excess photosynthetic excitation energy is discussed.  相似文献   

5.
The shortterm (10–22 d) effect of Zn, Hg, Cu, Cd, Pb, and Ni on the length growth of Mytilus edulis is studied. Significant reductions of growth rate was found at 0.3 g Hgl-1, 3 g Cul-1, 10 g Znl-1, and 10 g Cdl-1 added to the local sea water, while concentrations of up to 200 gl-1 of Pb and Ni had no effect on the growth. With exposure to Cu and Zn, there was a linear reduction in growth rate with increasing metal concentration up to about 6 g Cul-1 and 100 g Znl-1. Above these levels, growth stopped with Cu, while with Zn it was stabilized at about 20% of control growth. When Hg and Cd were added, a curvilinear relationship between growth and metal concentration is indicated. With Hg, growth rate is nearly zero above 3–4 g Hgl-1, while the growth rate was 50% of control after 10 d of exposure to 100 g Cdl-1. At 2 g Cdl-1 there was a significant stimulation of length increase. Observed EC50-values for growth were 0.3–0.4 g Hgl-1, 3–4 g Cul-1, 60 g Znl-1, and 100 g Cdl-1.  相似文献   

6.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

7.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

8.
I. Laing 《Marine Biology》1985,85(1):37-41
Batch cultures of the marine unicellular centric diatom Chaetoceros calcitrans (Paulsen) Takano were maintained by serial subculturing every 4 d into nutrient-enriched natural sea-water medium supplemented with 350, 950 and 1 400 g-at Si l-1. The diatom cultures removed initial silica concentrations of 350 and 950 g-at l-1 from the medium within 2 and 3 d, respectively. About 30 g-at l-1 of the highest initial concentration remained in the medium after 4 d. The mean final cell density with an enrichment of 350 g-at Si l-1 was 3.43±0.26×104 cells l-1 (median cell volume = 77.5±5.0 m3); with 950 g-at Si l-1, 8.55±0.55×104 cells l-1 (50.0±4.5 m3); and with 1 400 g-at Si l-1, 9.72±0.48×104 cells l-1 (37.3±5.0 m3). There was no significant difference in the final total organic weight of cells produced, which was in the range of 170 to 190 mg per 250 ml culture. This consisted of proportionately more lipid and carbohydrate and less protein from the treatment with 350 g-at Si l-1 than from the 1 400 g-at Si l-1 treatment.  相似文献   

9.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

10.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

11.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

12.
Photosynthetic parameters for netplankton (>22 m) and nanoplankton (<22 m) varied over similar ranges but exhibited different seasonal and geographic patterns of variation. Nanoplankton a was relatively constant (0.06 mg C [mg Chl · h]-1 [E m-2 s-1]-1), but P m B (mg C [mg Chl · d]-1) was an exponential function of temperature independent of nutrient concentration and vertical stability in the euphotic zone. The temperature function gives a P m B of 24 at 25°C for nanoplankton growing in an estuarine environment characterized by high nutrient concentrations and a shallow, stratified euphotic zone. Variations in netplankton a and P m B were less predictable and were not correlated with temperature, nutrients or vertical stability. Chain forming diatoms with small cells were able to achieve high (0.10 to 0.15) and P m B (20 to 24) that were 3 to 5 times higher than large-celled diatoms and dinoflagellates were able to achieve.  相似文献   

13.
The distribution of cyanobacteria in the surface waters of the North Sea was measured during July 1987. Numbers of cyanobacteria ranged from 2.5x106 to 1.7x108 cells 1-1. In the majority of stations, cyanobacterial numbers were highest in the near-surface water and a subsurface maximum was found at only one station. The distribution of 14C among the end-products of photosynthesis was determined for picoplankton (<1 m) and other phytoplankton >1 m throughout the North Sea. The majority of label was found in the protein fraction of both picoplankton and >1 m phytoplankton; incorporation into lipids and polysaccharides plus nucleic acids was much lower. We interpret the large incorporation into protein to be a consequence of nutrient limitation of these natural assemblages. Photosynthetic parameters of the two size fractions were also determined. Assimilation number (P m B ) and initial slope were greater for the picoplankton fraction than for phytoplankton >1 m but there was no evidence of significant photoinhibition of either fraction at irradiances up to 1 000 E m-2 s-1.  相似文献   

14.
Photosynthesis and respiration in Ahnfeltia plicata (Huds.) Fries (Gigartinales) was measured in a seawater flowthrough system at different temperatures, salinities and photon flux densities (PFD). The exchanges of dissolved oxygen and inorganic carbon were continuously recorded with an oxygen probe and a pH electrode measuring variation in CO2–HCO 3 - equilibrium as pH changes. Highest apparent photosynthesis at moderate photon flux density (PFD 50 E m-2 s-1) was found at 15°C and 33 S. Photosynthesis was measured up to PFD 500 E m-2 s-1 and no light saturation was documented. In the present experimental set-up, with continuous supply of fresh seawater, the number of limiting factors during photosynthesis measurements is reduced.  相似文献   

15.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

16.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

17.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

18.
The physiological condition, determined as the ammonia excretion rate (V NH 4 + ), total lipid level and lipid class composition, of two deposit-feeding benthic amphipods, Monoporeia (=Pontoporeia) affinis and Pontoporeia femorata, was studied from 12 opensea stations in the northern Baltic Sea between 24 May and 11 June 1993. The M. affinis populations can be geographically grouped according to their physiological condition: (1) eastern Gulf of Finland, with moderate lipid level (mean 24.4% of dry wt) and high V NH 4 + (45.2 mol NH 4 + g-1 dry wt d-1); (2) Bothnian Sea, wigh high lipid level (34.5%) and low V NH 4 + (24.6 mol NH 4 + g-1 dry wt d-1); and (3) Bothnian Bay, with low lipid level (15.2%) and high V NH 4 + (44.3 mol NH 4 + dry wt d-1). A similar pattern could be observed also in the level of triacylglycerols and the neutral-to-polar lipid ratio. P. femorata, the dominating species in the western Gulf of Finland, showed variable station-specific excretion rates (22.3 to 43.0 mol NH 4 + g-1 dry wt d-1) and lipid levels (23.4 to 30.4%). The spatial variability in the weight-specific V NH 4 + of M. affinis could not be explained by the differences in the size of individuals, lipid level or lipid class composition; this emphasizes the significance of the effects of spatially differing nutritional conditions, which manifest themselves as different modes of metabolic energy production and different intensities of energy storage. In addition, the potential contribution of the amphipod populations to benthic nitrogen mineralization was estimated; in May to June, the NH 4 + release of different populations ranged from 12 to 237 mol NH 4 + m-2d-1. In general, populations with high abundance and/or biomass release the greatest amounts of NH 4 + , but the values are modified by the physiological condition of the individuals.  相似文献   

19.
A unique data set from lead risk assessments performed on 67 public housing developments from across the United States was made available for analyzes. The data set includes results of lead analysis from 5906 dust wipes and from 1222 soil samples. A total of 487 dwelling units in these developments, as well as associated common areas, were sampled, all by the same team of inspectors. The number of dwelling units within a development that were sampled reflected the guidelines then in force, the 1990 Interim HUD Guidelines, rather than those specified in the 1995 Guidelines. Median dust lead loadings for floors, 151gm–2 (14gft–2), and window sills, 936gm–2 (87gft–2), were much less than former HUD limits of 1076gm–2 (100gft–2) and 5380gm–2 (500gft–2), respectively and are only about one-third of the recently established limits of 431gm–2 (40gft–2) and 2690gm–2 (250gft–2). In contrast, the median lead loading for window troughs, 8560gm–2 (795gft–2), was almost identical to the HUD clearance limit of 8610gm–2 (800gft–2). There was a strong positive correlation between floor and window trough lead loading values for samples from the same dwelling units and those from common areas of the housing developments. Door threshold samples, which may reflect conditions exterior to the dwelling unit, were collected from 53 dwelling units. Median lead loading levels of these samples were more than ten times higher than those in floor samples from the same dwelling units, were about the same as window sill samples and about one-half of levels in window trough samples. Composite sample results, simulated by averaging results from four samples within a dwelling unit, revealed that in order to have the same rate of excedence of standards, the composite standards would have to be reduced, for example, from the single sample value of 1076gm–2 (100gft–2) to 527gm–2 (49gft–2) for floor samples and from the single sample value of 8610gm–2 (800gft–2) to 5160gm–2 (479gft–2) for window troughs. For this public housing data set, the portion of the units in developments containing more than 225 units which exceeded the established limit for window samples was the same when using either the full data set or a random one-half of the data set. This suggests that, for this data set, the number of dwelling units sampled was excessive . Thus, the required increase in the number of dwelling units to be sampled specified in the 1995 Guidelines for developments with more than 225 dwelling units, may not have been necessary if this data set is representative of public housing developments in the United States.  相似文献   

20.
S. Patel  B. Patel 《Marine Biology》1971,10(3):272-279
The effect of ionizing radiation on the iron-linked protein (haemoglobin) of the marine lamellibranchs Anadara granosa (Linn.) and Cardita antiquata (Lam.) from Bombay waters, India is discussed. Purified haemoglobin solutions were exposed to a 60Cobalt source delivering a dose of about 4,600 rad/min, at the sample irradiation point. Radiation damage or degradation was measured spectrophometrically by studying changes in the absorption spectra following irradiation in the presence and absence of oxygen. Exposure to ionizing radiation in general caused a decrease in absorption of both haemoglobins, irrespective of location, viz extra-versus intracellular, at Soret (412 m), (540 to 42 m) and (574 to 76 m) peaks, and an increase in absorption at 510 and 630 m. Upon exposure to a higher dose, O2Hb of C. antiquata showed an increase in absorption at the protein peak (280 m); exposure to a lower dose, however, resulted in decreased absorption. Furthermore, the changes following irradiation were dependent upon the initial state of the pigment. Oxyhaemoglobin, when exposed to radiation, oxidized to hemiglobin, and hemiglobin reduced to oxyhaemoglobin. The extracellular haemoglobin of high molecular weight (3x106) of the false cockle C. antiquata was found to be extremely radio-resistant, whereas intracellular haemoglobin of low molecular weight (74,000) of the arcid clam A. granosa was highly radiosensitive, since it could not be exposed to doses exceeding 18,000 r.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号