首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are discordant results on trends in nutrient river water quality from the economical transition countries in Europe. The present study assessed the impact of these economical changes on the load and concentration at 17 monitoring stations along the Nemunas River and its major tributaries (Lithuania and Belarus). Three time periods were evaluated: the Soviet rule command system period 1986–1991, the transfer to market economy period 1992–1996 and the post reform period 1997–2002. The most surprising result in this study, was the increased area-specific load of NO3-N from the first to the third period at almost all the sampling sites. The increase was particularly large (43–78%) at the sites in the Lithuanian part of the river. The corresponding load increase in the Belarussian part of the river was only 1–15%. The statistical analyses of concentration data confirm the strong upward NO3-N trend at the Nemunas mouth and at 5 of the 6 tributaries in the lower part of Nemunas. Temporal and spatial analysis of nitrates transport in the Nemunas River and its main tributaries revealed that nitrates mainly originate from agricultural areas. The upward trends were most likely an effect of ploughing of pastures and unbalanced crop fertilisation in combination with large storage and accumulation of soil-nitrogen during the Soviet period.On contrary to nitrate-N, the area-specific load of PO4-P decreased significantly from the first to the third period at all sites along the Nemunas River (31–86%). Seasonal (SMK) and Partial (PMK) Mann-Kendall tests on PO4-P concentrations also showed significant downward trend at 14 of 16 investigated sites. The decrease of PO4-P levels was attributed to the reduction of municipal and industrial point source emissions and to the decreased livestock numbers.The NH4-N load showed the same pattern as PO4-P. At the river mouth the load was 90 kg km−2 yr−1 during the first period compared to only 20–30 kg km−2 yr−1 in the third period. The trend test on NH4-N concentrations detected significant downward trends at 5 out of 16 sites. The declines were explained by decreased emissions from cities and large animal breeding farms.This study showed that trend analysis at multiple sites in a river basin is crucial for the understanding of the variability in time and space. Such analysis is also important for our interpretation of underlying sources and fluxes in a drainage basin over time. This is particularly important for compounds that have different source origin.  相似文献   

2.
The objective of the investigations of the Jadro River, located in Croatia, was to estimate the nitrogen and phosphorus loads in the Jadro River spring and its streamflow by calculating the load in kg/day or tons/year and to compare this with the load for the maximum allowed concentrations (MAC) for drinking water (Official Bulletin, No 46/94) expressed in kg/day or tons/year.Daily pollution loads at the Jadro River spring for total N ranged from 0 to 304 kg, for NH3-N from 0 to 38 kg, for NO3-N from 0–1321 kg and for PO4-P from 0–92 kg in the period from September 1993 to September 2003. When compared with MAC loads the results prove that the Jadro River spring is not polluted by nitrogen compounds and phosphorus.The average annual load for total N ranged from 10 to 33 t, for NH3-N from 0.25 to 5.15 t, for NO3-N from 40 to 190 t, and for PO4-P from 0.3 to 11.5 t. The nitrogen compounds and phosphorus loads vary from one year to another without any constant decreasing or increasing trends. The annual average loads compared with the average annual MAC loads (especially for NH3-N and PO4-P) show that there were no threats of constant pollution of the spring.The loads for total N and PO4-P along the Jadro River flow from the spring to the fishpond entrance were monitored over a five year period from September 1999 to September 2004. The results show no regularities. The highest annual total nitrogen load of 45 t was recorded at the entrance to the fishpond during the 2002/2003 period. The highest annual PO4-P load of 10 t was measured at the Vidović Bridge during the 2003/2004 period; however, the concentrations of N and P did not exceed the MAC concentrations which are prescribed for drinking water.According to the investigation results of the daily and average annual loads compared with MAC loads for drinking water, it can be concluded that the Jadro River spring and its streamflow are not polluted by nitrogen and phosphorus.  相似文献   

3.
This paper describes the development and application of an integrated modeling framework composed of an urban air chemistry model, an urban runoff model, and a water-quality model. The models were linked to simulate the fate and transport of air emissions of nitrogen compounds in the air, urban watershed, surface water runoff, and in a coastal receiving-water body. The model linkage is demonstrated by evaluating the potential water quality implications of reducing NO x emissions by 32%, volatile organic compound emissions by 51%, and ammonia emissions by 30%, representing changes from 1987 levels to proposed 2000 target levels in Los Angeles, California, USA. Simulations of the Los Angeles dry season during the summer of 1987 (June 1 to August 31) indicated that by reducing emissions from 1987 to proposed year 2000 levels, the dry deposition nitrogen loads to Santa Monica Bay and the Ballona Creek watershed were reduced 21.4% and 15.0%, respectively. Water quality modeling results indicated that dry season atmospheric load reductions to the Ballona Creek Estuary did not reduce chlorophyll-a levels or significantly raise nighttime dissolved oxygen levels because the magnitude of the reductions was negligible compared to non-atmospheric inputs of nitrogen compounds. Simulations of the time period from November 18, 1987 to December 4, 1987 during the Los Angeles wet season indicated that air emissions reductions produced an 18.6% reduction in the dry deposition nitrogen load to Santa Monica Bay, a 15.5% reduction in the dry deposition nitrogen load to the Ballona Creek watershed, a 16.8% reduction in the wet deposition nitrogen load to the Ballona Creek watershed, and a 16.1% reduction in the stormwater discharge load from the Ballona Creek watershed. Although the wet season load reductions are significant, modeling results of the ultimate effect on the Ballona Creek Estuary water quality were inconclusive.  相似文献   

4.
Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during – not only – scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 ± 0.70 and 0.14 ± 0.12 mg P l−1), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment–water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m−2 year−1 with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 ± 0.40 cm year−1) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km−2 year−1) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.  相似文献   

5.
采用遥感分布式面源污染评估模型(DPeRS),对2018年黄河流域(甘肃段)面源污染空间分布特征进行分析,具体包括多类型污染量产排特征解析和流域优先管控单元识别。结果表明,污染量上,2018年黄河流域(甘肃段)总氮(TN)、总磷(TP)、氨氮(NH3-N)、化学需氧量(CODCr)的面源污染排放负荷分别为65.6,11.8,19.1和77.2 kg/km2,入河量分别为836.7,33.3,220.2和1 353.3 t;空间分布上,氮型(TN和NH3-N)排放负荷高值区主要分布在流域中部和东部局部地区,流域大部分地区TP排放负荷均较高,CODCr面源污染排放负荷高值区分布较为零散。与排放负荷相比,黄河流域(甘肃段)面源污染入河负荷并不突出,这与该地区水资源量少有密切关系。筛选出黄河流域(甘肃段)面源污染优先控制单元15个,面积占比为85.2%,I类优控单元主要分布在庆阳市、天水市、兰州市和白银市等地区,II类优控单元主要分布在甘南藏族自治州,且TN、TP、NH3-N和CODCr面源污染优控单元识别结果的平均精度达到80%。  相似文献   

6.
The Northeastern semi-arid Brazilian region is experiencing rapid social and economic development based on improving water management and even in areas of low human occupation, anthropogenic emissions of N and P surpass natural emissions in at least one order of magnitude and these additional loads can alter the water quality of the receiving estuaries. This study estimates, using an emission factor approach, the annual emissions of N and P from natural processes and anthropogenic sources for estuaries along the Ceará State, NE Brazil. Emission factors from natural sources are one to two orders of magnitude lower than those for anthropogenic sources. Among the anthropogenic activities, the aquaculture is responsible for most N emission (0.52 t km−2 year−1) followed by waste water and husbandry. For P, the largest average emission factors are from husbandry (0.30 t km−2 year−1), waste water and agriculture.  相似文献   

7.
Contamination of oxygen-consuming organics (OCOs) was one of the most serious problems in the Yellow River of China. This study was conducted to analyze monitoring of the data on OCOs contamination for the river in 1980 and during 1992–1999 as well as examining the effect of suspended solids (SS) on chemical oxygen demand (CODMn) and biochemical oxygen demand (BOD5) of river water. Several significant results have arisen from the study. First, CODMn and BOD5 of the river water showed an increasing trend from the upper to the lower reaches of the mainstream. BOD5 values of river water in 1992 were significantly higher than those in 1980 and showed an increasing trend during 1992–1999. Second, OCOs in river water of the mainstream was attributed mainly to point sources; the ratio of point to non-point sources of BOD5 was about 2.81. The load from point sources showed an increasing trend during 1992–1998. In contrast, the load from non-point sources manifested a decreasing trend during this period; this was caused by the decreasing trend of SS content in river water. The total load of BOD5 from point and non-point sources displayed an increasing trend during 1992–1998. Third, as the humic substances in SS can hardly be biologically oxidized in natural conditions but can be oxidized by chemical oxidants such as potassium permanganate, CODMn was not suitable for being regarded as a parameter reflecting the pollution degree of OCOs in river water with a high SS content.  相似文献   

8.
Open precipitation and throughfall was collected at a Norway spruce stand in Finland using funnel-type collectors and at a black spruce stand in Canada using trough-type collectors. The presence or absence of a rim on the funnel, funnel diameter (9, 14 and 20 cm) and length of sampling period (1, 2 and 4 weeks) on monthly values were evaluated at the Norway spruce stand, and the number of collectors required for defined levels of accuracy and precision of throughfall loads to be reached and the influence of the spatial arrangement of collectors on solute concentrations was studied at both stands. The presence of a rim had no significant effect on open precipitation and throughfall amounts, but did on throughfall DOC, Ca2+, Mg2+, K+, Na+ and Cl ion loads. Deposition loads increased with decreasing funnel diameter; for open precipitation, this was due to increased catch efficiency while for throughfall the increase was attributed to canopy interaction and leaching of litter trapped in the collectors. Calculated monthly H+ loads decreased and those for all other constituents increased with collection period length. Using 15 collectors at the Norway spruce stand would allow throughfall loads to be determined to within 20% of the true mean weekly value with a confidence level of 95% for most solute, but not for NH4 +–N, NO3 –N, Mg2+ and SO4 2−-S. Using 15 trough collectors, the same confidence level at the more heterogeneous black spruce stand would only be achieved for H+, Cl, DOC and SO4 2−-S loads. In both stands, using either random or systematic placements of throughfall collectors gave similar results.  相似文献   

9.
Paper industries using different raw materials such as hard wood, bamboo, baggase, rice-straw and waste papers and bleaching chemicals like chlorine, hypochlorite, chlorine dioxide, hydrogen peroxide, sulphite and oxygen were studied to estimate organic pollution load and Adsorbable Organic Halides (AOX) per ton of production. The hard wood based paper industries generate higher Chemical Oxygen Demand (COD) loads (105–182 kg t−1) and Biochemical Oxygen Demand (BOD) loads (32.0–72 kg t−1) compared to the agro and waste paper based industrial effluents. The bleaching sequences such as C–EP–H–H, C–E–H–H, C–E–Do–D1 and O–Do–EOP–D1 are adopted in the paper industries and the molecular elemental chlorine free bleaching sequence discharges low AOX in the effluent. The range of AOX concentration in the final effluent from the paper industries was 0.08–0.99 kg t−1 of production. Water consumption was in the range of 100–130 m3 t−1 of paper production for wood based industries and 30–50 m3 for the waste paper based industries. Paper machine effluents are partially recycled after treatment and pulp mill black liquor are subject to chemical recovery after evaporation to reduce the water consumption and the total pollution loads. Hypochlorite bleaching units of textile bleaching processes generate more AOX (17.2–18.3 mg l−1) and are consuming more water (45–80 l kg−1) whereas alkali peroxide bleaching hardly generates the AOX in the effluents and water consumption was also comparatively less (40 l kg−1 of yarn/cloth).  相似文献   

10.
This study presents the results of the analyses of Cd, Pb, cations and anions present in precipitation and dust at a pre-alpine and a suburban site in Switzerland in the period from 1988 to 2003. The aim of these measurements was to monitor the success of measures taken to diminish pollutant emissions. No change was found for Ca2+, K+, Na+ and Mg2+ loads – in line with expectations, as no reducing measures had been taken. Statistically significant and largely decreasing values (50–90%) were found for Cl and Cd (linked to the fitting of filters in incineration plants), Pb (unleaded petrol), (diminishing the use of mineral oil with high S content), and the proton (lower HCl and SO2 emissions). A smaller decrease (up to 30%) or none was registered for oxidised nitrogen components (fitting cars with catalytic converters, but an increase in numbers of cars and trucks). No significant change was found for NH3 as farming techniques had undergone no major changes. The long-term measurements show that the measures taken to reduce emissions were successful. A shorter monitoring period would have been misleading owing to data variability and temporary incidents e.g. amount of precipitation.  相似文献   

11.
We assessed the quality and pollution status of source surface waters in Zaria, Nigeria by monitoring the nature, cause and extent of pollution in Samaru stream, Kubanni River and Kubanni dam over a period of 10 months, between March and December 2002. A total of 228 water samples was collected from 12 sites and analysed for a total of ten physicochemical and one bacteriological quality indicators, using standard methods. Aesthetic water quality impairment parameters were also observed. The mean values of most water quality parameters were significantly higher (P < 0.05) in both the stream and river than in the dam. There was no significant correlation between faecal coliform counts (FCC) and water temperature (in the range 15–33°C); pH (5.77–7.32); and turbidity (1.4–567 NTU). The high FCC ranged from 2.0 × 101 to 1.6 × 106 MPN/100 ml and exceeded the WHO standards for drinking water and water used for fresh-produce irrigation, and correlated positively (P < 0.05) with conductivity (in the range 68–1,029 μS/cm); TDS (10.0–70.0 mg/l); TSS (10.0–70.0 mg/l); Cl (7.5–181 mg/l); PO4P (0.01–0.41 mg/l); NO3N (0.6–3.8 mg/l) and BOD5 (0.1–14.9 mg/l). The main pollution sources were municipal wastewater, stormwater runoffs, the ABU sewage treatment plant, abattoir effluents and irrigation farms treated with chemical fertilisers. We conclude that these water bodies are potentially hazardous to public health and that proper sewage treatment and river quality monitoring are needed to warn against hazards to public health.  相似文献   

12.
The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010–2039, 2040–2069, and 2070–2099) relative to a baseline of 1961–1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash–Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m3 s−1 per decade, and a significant upward trend in summer, with an increase rate of 1.32 m3 s−1 per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH4+-N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.  相似文献   

13.
The main objective of this research was to estimate the total mass of nitrogen discharged from various sources in Korea using the mass balance approach. Three different nitrogen mass balances were presented: (1) agricultural activities including raising crops and animal husbandry; (2) domestic activities, and (3) activities in forest and urban areas. These nitrogen balances were combined to estimate riverine discharge of nitrogen to the ocean in national scale. Nitrogen inputs include atmospheric deposition, biological nitrogen fixation, application of inorganic fertilizers/manures, animal feed/imported foodstuffs, and meat/fish. Nitrogen outputs include ammonia volatilization, denitrification, human/animal waste generation, crop/meat production, and riverine discharge to the ocean. The estimated total nitrogen input in Korea was 1,194.5 × 103 tons N/year. Nitrogen discharged into rivers was estimated as 408–422 × 103 tons N/year, of which 66–71% was diffuse in origin. The estimated diffuse discharges for land uses were estimated as 82 × 103 tons N/year from agricultural areas, 7 × 103 tons N/year from forestry and 75 × 103 tons N/year from urban and industrial areas.  相似文献   

14.
A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 μeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 μeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 μeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 μeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 μeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.  相似文献   

15.
Phytoplankton variation in large shallow eutrophic lakes is characterized by high spatial and temporal heterogenity. Understanding the pattern of phytoplankton variation and the relationships between it and environmental variables can contribute to eutrophic lakes management. In this study Taihu Lake, one of the largest eutrophic fresh water lake in China, was taken as study area. The water body of Taihu Lake was divided into five regions viz. Wuli bay (WB), Meilian Bay (MB), West Taihu Lake (WTL), Main Body of Taihu Lake (MBTL) and East Taihu Lake (ETL). Concentrations of chlorophyll-a and the related environmental variables were determined in each region in the period 2000–2003. Factor analysis and multivariate analysis were applied to evaluate the interactions between phytoplankton variation and environmental variables. Results showed that the highest average concentrations of TN, TP and Chl-a were observed in WB, followed in a descending order by MB and WTL, and the lowest concentrations of TN, TP and Chl-a were observed in MBTL and ETL. Chl-a and TP concentrations in most regions (except ETL) declined during the study period. It suggested that to some extent the lake was recovering from eutrophication. However, persistent ascending of TN and NH4–N in all five regions indicated the deteriorating of water quality in the study period. Results of multivariate showed that the relationships between phytoplankton biomass and environmental variables varied among regions. TP illustrated itself a controlling role on phytoplankton in WB, MB, WTL and MBTL according to the significant positive relations to phytoplankton biomass in these regions. Nitrogen could be identified as a limiting factor to phytoplankton biomass in ETL in view of the positive correlations between TN and phytoplankton and between NH4–N and phytoplankton. Spatial variation of interactions between phytoplankton and environmental parameters suggested proper eutrophication control measures were needed to restore ecological system in each region of Taihu Lake.  相似文献   

16.
Nineteen years of monitoring data from the eutrophic Skive Fjord, Denmark were examined for linkages to external pressures and drivers, including nutrient inputs, meteorology and stocks of blue mussels. Linkages were examined by: 1) time-series analysis to document effects of nutrient reduction programs, 2) Pearson Rank correlations, 3) multivariate statistical analysis (PLS) to identify water quality variables with high predictability and their linkages to pressures, and 4) regression analysis to quantify relationships between pressures and water quality. Freshwater input, nitrogen load and phosphorus load showed decreasing trends through the period 1984–2002. The load reductions were only partially translated into trends in water quality: phosphorus decreased in most seasons, while total nitrogen decreased during winter and spring only. Phosphorus concentration had the highest predictability (explained by seasonal temperature variation) followed by transparency, silicate, tot-N, chlorophyll-a, primary productivity, phytoplankton diversity and phytoplankton turnover. The variation in pressures other than nutrient input confounded the relations between loads and water quality. High biomass of mussels led to reduced chlorophyll-a and increased transparency, while short-term variability in water column mixing led to changes in chlorophyll-a due to nutrient entrainment and coupling to benthic mussels.  相似文献   

17.
Waters and sediments of Subin River, which flows through the industrial and commercial areas of Kumasi in the Ashanti region of Ghana, were geochemically investigated to ascertain heavy metal pollution levels due to anthropogenic activities. The study shows preoccupying pollution levels that constitute a threat to public and ecological systems. The waters of Subin River are neutral to slightly basic, inferred from pH values of 6.89–7.65). Electric conductivity (EC) of the waters ranges from 822 to 1,821 μs/cm and the range of total dissolved solids (TDS) is from 409 to 913 mg/l. Toxic elements contents of sediments and waters from 10 sites along the river were analysed by instrumental neutron activation analysis (INAA), and Al, As, Cd, Cr, Cu and Zn were determined. The concentrations of Al, As, Cd, Cr, Cu and Zn in the waters range between 4.02–15.18, 0.007–0.16, 0.002–0.05, 0.001–0.019, 1.32–7.04 and 4.28–10.2 mg/l, respectively. The contamination factors (CF) computed for the elements indicate that with the exception of sampling site S10, the sediments are polluted with Cd. Chromium contamination in the sediments is observed at S6 and S7, where the CF values were 1.39 and 1.52, respectively. The pollution load indices (PLI) were low (<1) and ranged from 0.14 to 0.75, suggesting that the overall sediment column of the river is not polluted.  相似文献   

18.
Estimation of the Human Impact on Nutrient Loads Carried by the Elbe River   总被引:2,自引:0,他引:2  
The reunification of Germany led to dramatically reduced emissions of nitrogen (N) and phosphorus (P) to the environment. The aim of the present study was to examine how these exceptional decreases influenced the amounts of nutrients carried by the Elbe River to the North Sea. In particular, we attempted to extract anthropogenic signals from time series of riverine loads of nitrogen and phosphorus by developing a normalization technique that enabled removal of natural fluctuations caused by several weather-dependent variables. This analysis revealed several notable downward trends. The normalized loads of total-N and NO3-N exhibited an almost linear trend, even though the nitrogen surplus in agriculture dropped dramatically in 1990 and then slowly increased. Furthermore, the decrease in total-P loads was found to be considerably smaller close to the mouth of the river than further upstream. Studying the predictive ability of different normalization models showed the following: (i) nutrient loads were influenced primarily by water discharge; (ii) models taking into account water temperature, load of suspended particulate matter, and salinity were superior for some combinations of sampling sites and nutrient species; semiparametric normalization models were almost invariably better than ordinary regression models.  相似文献   

19.
The spatial and temporal dynamics of physical variables, inorganic nutrients and phytoplankton chlorophyll a were investigated in Xiangxi Bay from 23 Feb. to 28 Apr. every six days, including one daily sampling site and one bidaily sampling site. The concentrations of nutrient variables showed ranges of 0.02–3.20 mg/L for dissolved silicate (Si); 0.06–2.40 mg/L for DIN (NH4N + NO2N + NO3N); 0.03–0.56 mg/L for PO4P and 0.22–193.37 μg/L for chlorophyll a, respectively. The concentration of chlorophyll a and inorganic nutrients were interpolated using GIS techniques. The results indicated that the spring bloom was occurred twice in space during the whole monitoring period (The first one: 26 Feb.–23 Mar.; the second one: 23 Mar.–28 Apr.). The concentration of DIN was always high in the mouth of Xiangxi Bay, and PO4P was high in the upstream of Xiangxi Bay during the whole bloom period. Si seems no obvious difference in space in the beginning of the spring bloom, but showed high heterogeneity in space and time with the development of spring bloom. By comparing the interpolated maps of chlorophyll a and inorganic variables, obvious consumptions of Si and DIN were found when the bloom status was serious. However, no obvious depletion of PO4P was found. Spatial regression analysis could explained most variation of Chl-a except at the begin of the first and second bloom. The result indicated that Si was the factor limiting Chl-a in space before achieved the max area of hypertrophic in the first and second bloom period. When Si was obviously exhausted, DIN became the factor limiting the Chl-a in space. Daily and bidaily monitoring of Site A and B, representing for high DIN: PO4P ratio and low DIN:PO4P ratio, indicated that the concentration of Si was decreased with times at both site A and B, and the dramatically drop of DIN was found in the end monitoring at site B. Multiple stepwise regression analysis indicated that Si was the most important factor affect the development of spring bloom both at site A and B in time series.  相似文献   

20.
An innovative approach of mean emission by vehicle type was used in this paper to assess the impact of new vehicle emission standards in Beijing, China during the period of 2000–2005. It was found that CO and NOx emissions decreased by 48% and 23%, respectively, from Type O (before 2000) to Type I (year 2000) vehicles. The reductions from Type O to Type II (year 2002) vehicles were 85% and 73% for CO and NOx, respectively. When all three types of vehicles (Types O, I and II) are combined, the annual per vehicle CO emissions decreased from 586 kg per vehicle per year in 2000 to 324 kg per vehicle per year in 2005, while that of NOx decreased from 66.9 to 43.4 kg per vehicle per year, which was mainly resulted from the impact of stringent new vehicle emission standards implemented in years 2000 and 2002. However, the vehicle population increased by 70% during the same time period, which offset the impact of cleaner vehicles. Thus, the total vehicle emission decreased little for CO (885,000 tons in 2000, 837,000 tons in 2005) and even increased slightly for NOx (101,000 and 112,000 tons in 2000 and 2005, respectively). The ambient concentrations of CO decreased significantly throughout 2000–2005, the same trend was not observed for NO2. Correlation analysis (grey correlation and Pearson correlation) between the annual vehicle emissions and annual concentrations of CO, the annual NOx emission and annual NO2 concentration indicated that the implementation of new vehicle emission standards was associated with the abatement of ambient CO and NO2 concentrations in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号